Trim Regions for Online Computation of From-Region Potentially

Visible Sets

PHILIP VOGLREITER, Graz University of Technology, Austria and VRVis Forschungs GmbH, Austria
BERNHARD KERBL, TU Wien, Austria and Inria, Université Cote d’Azur, France

ALEXANDER WEINRAUCH, Graz University of Technology, Austria

JOERG H. MUELLER, Graz University of Technology, Austria

THOMAS NEFF, Graz University of Technology, Austria
MARKUS STEINBERGER, Graz University of Technology, Austria
DIETER SCHMALSTIEG, Graz University of Technology, Austria

Fig. 1. (a) The view in the inset is seen by an observer standing at the location indicated by the inset’s leader line. Our method computes a potentially visible
set (PVS) corresponding to a viewcell (region) of a given radius around the viewpoint in real time. The six images each show a PVS for view cell sizes of 5-30
cm. The truly visible part of the scene is shown shaded, while false positives are shown in blue and the remaining scene is shown in grey. No false negatives
are visible. (b) Note how the width of the visible “corridor” on the floor progressively expands with the viewcell size. (c) The base of the crane, which was a
false positive of 5 to 15 cm, becomes a true part of the PVS at 20 cm and above. It is typical that false positives become true positives as the viewcell size

expands, since they are “almost visible” when first observed.

P. Voglreiter, J. Mueller and T. Neff are affiliated with the Christian Doppler Laboratory
of Semantic 3D Vision at Graz University of Technology.

Authors’ addresses: Philip Voglreiter, voglreiter@icg.tugraz.at, Graz University of Tech-
nology, Austria and VRVis Forschungs GmbH, Austria; Bernhard Kerbl, kerbl@cg.
tuwien.ac.at, TU Wien, Austria and Inria, Université Cote d’Azur, France; Alexander
Weinrauch, alexander.weinrauch@icg.tugraz.at, Graz University of Technology, Aus-
tria; Joerg H. Mueller, joerg.mueller@icg.tugraz.at, Graz University of Technology,
Austria; Thomas Neff, thomas.neff@icg.tugraz.at, Graz University of Technology, Aus-
tria; Markus Steinberger, steinberger@icg.tugraz.at, Graz University of Technology,
Austria; Dieter Schmalstieg, schmalstieg@tugraz.at, Graz University of Technology,
Austria.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART

https://doi.org/10.1145/3592434

For visibility computation, a from-region potentially visible set (PVS) is an
established tool in rendering acceleration, but its high computational cost
means that a from-region PVS is almost always precomputed. Precomputa-
tion restricts the use of PVS to static scenes and leads to high storage cost, in
particular, if we need fine-grained regions. For dynamic applications, such
as streaming content over a variable-bandwidth network, online PVS com-
putation with configurable region size is required. We address this need with
trim regions, a new method for generating from-region PVS for arbitrary
scenes in real time. Trim regions perform controlled erosion of object silhou-
ettes in image space, implicitly applying the shrinking theorem known from
previous work. Our algorithm is the first that applies automatic shrinking
to unconstrained 3D scenes, including non-manifold meshes, and does so
in real time using an efficient GPU execution model. We demonstrate that
our algorithm generates a tight PVS for complex scenes and outperforms
previous online methods for from-viewpoint and from-region PVS. It runs
at 60 Hz for realistic game scenes consisting of millions of triangles and
computes PVS with tightness matching or surpassing existing approaches.

CCS Concepts: « Computing methodologies — Visibility.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.


HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0002-5168-8648
HTTPS://ORCID.ORG/0000-0001-5194-3293
HTTPS://ORCID.ORG/0000-0002-6559-5653
HTTPS://ORCID.ORG/0000-0002-6559-5653
HTTPS://ORCID.ORG/0000-0001-5977-8536
HTTPS://ORCID.ORG/0000-0003-2813-2235
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0000-0001-5194-3293
https://orcid.org/0000-0001-5194-3293
https://orcid.org/0000-0002-6559-5653
https://orcid.org/0000-0002-6559-5653
https://orcid.org/0000-0001-5977-8536
https://orcid.org/0000-0003-2813-2235
https://doi.org/10.1145/3592434

. Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

ACM Reference Format:

Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller,
Thomas Neff, Markus Steinberger, and Dieter Schmalstieg. 2023. Trim Re-
gions for Online Computation of From-Region Potentially Visible Sets. ACM
Trans. Graph. 42, 4 (August 2023), 15 pages. https://doi.org/10.1145/3592434

1 INTRODUCTION

Visibility computation is fundamental to computer graphics. In real-
time rendering, view frustum culling is often followed by occlusion
culling, which attempts to efficiently eliminate as many invisible
portions of the scene as possible, before the remainder is submitted
to expensive shading. Occlusion culling usually relies on computing
a potentially visible set (PVS), i.e, a superset of the exact visible
set (EVS). A PVS is preferred over an EVS, because a PVS can be
determined more efficiently [Airey et al. 1990].

Existing PVS methods fall into one of two major categories [Cohen-
Or et al. 2003]: From-point PVS methods, which are often used in
game engines or architectural preview, compute visibility for a given
viewpoint in every frame. In contrast, from-region PVS methods par-
tition the space of allowed camera poses into viewcells and compute
visibility that is valid for any viewpoint inside the viewcell. Since
from-region PVS computation is a 4D problem [Durand 1999], it is
usually performed offline, i.e, in a precomputation step.

In contrast, we are interested in online from-region PVS methods,
since they facilitate novel forms of remote rendering [Shi and Hsu
2015], where a cloud or edge server streams shaded geometry just
in time to a lightweight client, such as a set-top box or a wireless
virtual reality (VR) headset [Hladky et al. 2019b; Mueller et al. 2018].
The client only needs an inexpensive and energy-efficient fixed-
function pipeline to render textured polygons and can apply latency
compensation by using the latest user input to control the viewpoint.
Such latency concealment is particularly important for VR.

Such a scenario benefits from the fact that, depending on the
maximum speed of user motion, a from-region PVS remains valid
for a certain timespan [Wonka et al. 2001]. Within this timespan,
the rendering engine can predict which objects may become visi-
ble. It can make preparations to render those objects, preload them
from nonvolatile storage or transmit them over the network with-
out noticeable latency to the user. If we want to support streaming
of dynamic, animated scenes, such as for computer games, scien-
tific simulation, or telepresence, this implies that the from-region
PVS must be computed online. Because of the high computational
complexity, online computation has hardly been attempted.

An early notable exception is instant visibility [Wonka et al. 2001].
Like our method, it builds on the idea of occluder shrinking pro-
posed by Wonka et al. [2000]. However, the original publication
demonstrated this idea only for 2.5D city scenes, exploiting the fact
that facades can be used as large convex occluders and allow for
straightforward 2D geometric shrinking. Unfortunately, applying
the same occluder shrinking to general 3D objects requires a three-
dimensional erosion, which is difficult to compute geometrically for
arbitrary scenes and viewcells [Décoret et al. 2003].

We show that occluder shrinking for general 3D objects can be
computed with a rasterization pipeline, which makes it simple and
efficient. Our method has several novel contributions:

=— potentially visible surface
[] shrunk/trimmed object
[ remaining object

= surface shrinking -~

Fig. 2. (left) Geometric occluder shrinking needs to erode the entire object
geometry to determine disocclusions, which is difficult to do analytically in
3D. (right) It is sufficient to only chisel away areas at the silhouette edges,
which we call trim regions. This can be done using screen-space rasterization.

(1) We present a visibility method based entirely on rasterization
for computing occluder shrinking for arbitrary polygonal
scenes. Our method imposes very few restrictions on the
scene geometry. We do not require manifold geometry or
watertight meshes and even support polygon soups and in-
stanced rendering. The only requirement is the ability to
identify triangle neighborhoods via shared edges.

(2) We extend occluder shrinking to support self-occlusion and
occludee shrinking. Our results reveal that these capabilities,
which have not been present in previous work, significantly
increase the tightness of the potentially visible set.

(3) We explain how to combine our visibility method with a
layer-by-layer traversal of a scene octree to create a scalable
from-region PVS method that runs at interactive frame rates.
The octree itself can be created in seconds upon loading the
scene, and no further precomputation is required.

To the best of our knowledge, we present the first and only system
that computes a from-region PVS on non-manifold 3D scenes in real
time. We demonstrate how our method performs favorably on com-
plex scenes with millions of polygons at 50-60 Hz. It outperforms
previous approaches with respect to runtime and PVS tightness.
Moreover, our method is able to operate under tight real-time con-
straints, as required by streaming applications.

2 BACKGROUND

As background for our method, we describe previous work on visi-
bility, organized into from-point and from-region approaches.

2.1 From-point visibility

From-point methods must run online to be useful, as the exact
viewpoint is only known at the beginning of a new frame [Bittner
and Wonka 2003; Cohen-Or et al. 2003]. Consequently, the visibility
stage must run synchronously with the rest of the rendering pipeline,
usually scheduled after view frustum culling. Such a coarse-to-fine
pipeline consisting of frustum culling, followed by occlusion culling
and, finally, shading, is typical for deferred rendering engines. In
deferred rendering, a from-point EVS is determined at image-space
precision by rasterizing into a visibility buffer [Burns and Hunt
2013] with depth and primitive id attachments.


https://doi.org/10.1145/3592434

Trim Regions for Online Computation of From-Region Potentially Visible Sets

If scenes are large enough, it can pay off to run an inexpensive
from-point PVS method that removes occluded parts of the scene
quickly, ideally in large chunks at meshlet-level or object-level pre-
cision. As the final visibility per pixel can always be resolved with a
regular depth buffer, the tightness of the PVS is of primary interest
for the choice of visibility algorithm.

Most visibility algorithms work progressively by selecting a po-
tent occluder and removing the parts of the scene it occludes, the
occludees. Occluder selection in commercial rendering engines is
usually greedy, picking occluders such that they cover the largest
subset of remaining occludees. However, this can be suboptimal:
Significant occlusion savings frequently emerge only from the in-
terplay of many - often small - occluders. Therefore, it is vital to
consider occluder fusion [Schaufler et al. 2000; Wonka et al. 2000].

A popular approach for occluder fusion is to aggregate occluders
into an occluded volume, similar to a shadow volume. Occludees
are tested for containment in the occluded volume. The occluded
volume can be created as an explicit geometric structure, e.g as a
BSP tree [Bittner et al. 1998], shadow volume [Hudson et al. 1997]
or bounding volume hierarchy [Chandak et al. 2009]. However, in
from-viewpoint methods, it is usually more straightforward to rely
on the depth buffer as an occlusion volume, especially if an existing
depth buffer can be reused [Lee et al. 2018]. The depth buffer can be
utilized as an occluded volume by creating a depth pyramid [Greene
et al. 1993] or by using GPU occlusion queries [Bittner et al. 2004].

Alternatively, efficient occlusion culling can be facilitated by using
virtual occluders, i.e, hallucinated objects that are fully contained in
the occluded volume [Durand et al. 2000; Koltun et al. 2000; Schaufler
et al. 2000]. Such virtual occluders are often custom-made [Pers-
son 2012], which often complicates content generation and largely
precludes exploitation of occluder fusion in dynamic scenes.

Apart from the supported occluder types, the efficiency of occlu-
sion culling is strongly influenced by the execution environment:
CPU, GPU, or a mixed CPU-GPU environment. Unfortunately, each
of these cases faces inherent problems: CPU-only methods [Chan-
drasekaran et al. 2016; Collin 2011; Hasselgren et al. 2016], which
rasterize depth on the CPU, suffer from limited pixel throughput,
requiring overly coarse rasterization that may be prone to geo-
metric aliasing. Mixed CPU-GPU methods suffer from CPU-GPU
synchronization latency [Bittner et al. 2004], high CPU overhead
for fine-grained draw calls [Mattausch et al. 2008; Serpa and Ro-
drigues 2019], or low bandwidth of GPU-to-CPU readbacks, at least
on systems with a discrete GPU [Hill and Collin 2011]. GPU-only
methods strive to coordinate all GPU tasks without relying on the
CPU for synchronization. This approach has been restricted so far to
scenes consisting of a large set of uniform meshes or instances [Haar
and Aaltonen 2015; Shopf et al. 2008]. Our method falls into the
GPU-only class, but avoids the typical drawbacks.

2.2 From-region visibility

Streaming applications always require from-region visibility, since
the server cannot know the client’s exact new viewpoint in ad-
vance. From-region methods are computationally much more ex-
pensive than from-point methods, so running them online is gen-
erally avoided. During offline computation, the space of possible

Occluder

Occludee

Viewcell

Fig. 3. The erosion theorem states that determining from-point visibility
with respect to a shrunk occluder Q is equivalent to from-region visibility of
the original occluder O. Any ray emitted from within a viewcell V formed
around vy cannot observe an occludee O, if O’ is blocked by Q from vy.
Even the extremal point vy in V cannot see the extremal point x; of O’.

viewpoints can be subdivided into static viewcells, and a PVS per
viewcell can be computed [Teller and Séquin 1991].

Early from-region methods restrict the type of scene to 2.5D geom-
etry [Wonka et al. 2000], require watertight manifold meshes [Schau-
fler et al. 2000] or need large known occluders [Cohen-Or et al. 1998].
All these assumptions impose rather severe limitations on the range
of possible applications. Thus, later work has concentrated on sup-
porting more general scenes [Bittner et al. 2009; Laine 2005]. Today,
popular rendering engines, such as Unreal Engine, provide tools for
pre-computing a from-region PVS [Epic Games 2022].

The challenging characteristics of from-region visibility come
from its need to sample at least four dimensions: two for the view-
point, usually assumed to lie in a plane or on a 2D manifold, and
two for the ray direction. Existing strategies all have in common
that they split the 4D domain into 2D sub-spaces, where simpler
planar problems can be solved. A solution to the 4D PVS can then
be constructed by logically combining the sub-space visibility: In
order to be occluded in the PVS, it is necessary that an occludee
be occluded in all of the sub-spaces. The most obvious choice of
sub-space is to sample from-point EVS at multiple locations in the
viewcell and create the union of all EVS instances.

If dense sampling is considered too expensive, sufficient accu-
racy can be ensured by a variety of strategies, including adaptive
sampling [Bittner et al. 2009; Mattausch et al. 2006; Nirenstein and
Blake 2004], sampling 2D slices of the ray-space [Bittner et al. 2005;
Koltun et al. 2001; Leyvand et al. 2003], or imposing a restriction
to 2.5D scenes [Décoret et al. 2003; Koltun et al. 2000; Wonka et al.
2000] or to voxelized scenes [Hong et al. 1997; Schaufler et al. 2000].

Even with these optimizations, computation costs tend to be very
high, and the PVS is usually precomputed. Alas, offline computation
requires a lot of memory for storing results [Freitag et al. 2017] and
cannot handle dynamic scenes, in particular, if we need fine-grained
regions or if we want to adaptively vary the viewcell size.

Online PVS computation overcomes these problems and lends
itself to streaming [Hladky et al. 2019a; Mueller et al. 2018]. First,
only the PVS for the current viewcell needs to be stored in mem-
ory. Second, we can choose the viewcell’s size and shape based on
current rendering performance, network bandwidth or the user’s
speed [Wonka et al. 2001]. Third, a viewcell with a shape extrap-
olated from the current viewpoint allows ahead-of-time selection



S1 Sp Sy

Penumbra
(disoccluded region)

Umbra
(fully occluded region)

Trim region
Occluder

Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

Extended

: field of view

Fig. 4. (left) A camera located at position v looks at an object. A view ray extending towards s; hits the object at f and exits again at b. These two points form
an occlusion interval that prevents rendering of objects behind f. Another view ray grazes the object at a silhouette s, hitting the far plane at sg. Upon moving

the camera by A to the new position v, a view ray that grazes at s now hits the far plane at s;. Camera movement effectively disoccludes the “penumbra”
region between s, sy and s;. (middle) In the adapted view frustum that includes all view frusta of the viewcell centered at vy, the viewpoint moves back to v..

Just like other camera movements, this changes the occlusion intervals related to a silhouette s, and we need to adapt the trim region so that it includes f, and
b.. The new trim region includes both the light yellow and the dark yellow area. (right) The original view frustum (solid grey line) is centered at viewpoint vy.

A viewcell allows translations A around v and creates new view frustums with offset clipping planes (dashed grey line). We create a new view frustum with
center at v, that exactly aligns with the offset clipping planes. With this new frustum, we can also process parts of the scene that would be clipped from the

original view frustum (gray area inside the object).

of relevant portions of the scene and timely delivery for render-
ing [Correa et al. 2003]. Hladky et al. [2019a] investigate the set
of camera movements under which one triangle (2D) is covered
by another triangle (2D). Their approach limits occluder fusion to
explicitly connected primitives and requires unbounded linked lists
per pixel, which makes the method scale poorly to large scenes.
Our method is a re-interpretation of occluder shrinking proposed
by Wonka et al. [2000]. Here, an occluder is eroded so its projection
to image space shrinks. View rays (2D) from the original viewpoint
can pass the shrunk occluder projection (2D) in the same way as if
they were shot from a translated viewpoint inside a region (Figure 2).

3 TRIM REGIONS

We first lay out the fundamental principles of object erosion with
trim regions. We start by summarizing the proof of Wonka et al.
[2000]: Assume that a ray segment from a viewpoint v to a sur-
face point xg is blocked by an occluder O (Figure 3). Any ray to-
wards xg starting at a viewpoint v; taken from a spherical viewcell
V(vo,A) = {v1, s.t. [vop — vi| < A} passes O at a distance smaller
than A. This occlusion relationship is invertible: One can determine
a shrunk occluder Q by eroding O with V (o, A) Yo € boundary(O).
If Q still blocks the line from vg to x¢ (see mark yy in Figure 3), then
O blocks any ray segment from v; to xo (see mark y1). Hence, we
have identified an occlusion of xg from V (vg, A).

Décoret et al. [2003] further show that this occlusion actually
holds for all occludees x1 € V(x¢,A) as well (see mark y3). This
observation implies that occludees can also be shrunk, reducing an
occlusion test for a shaft connecting points in V(vg, A) to points in
V(x0,A) to a line-segment-only occlusion test from v to xq.

Applying occluder shrinking in practice requires computing a
3D erosion of an arbitrary polygonal object. But if we only want to

compute occlusion from a compact viewcell, we can avoid the need
to erode an entire object by concentrating only on its silhouette,
where much simpler local “trimming” operations suffice.

To that aim, we define occlusion intervals (Section 3.1) and in-
vestigate disocclusions (Section 3.2) around object silhouettes as a
result of camera translations. This forms the basis of 3D occluder
erosion using trim regions (Section 3.3). Next, we investigate the
shape of the viewcell (Section 3.4) and derive how to correctly handle
multiple consecutive occludees along a line of sight (Section 3.5). We
also discuss how to determine erosion of an entire polygonal object
based on finding the optimal direction (Section 3.6) for each trim
region along an occluder silhouette.

3.1 Occlusion intervals

Let us first define the concept of occlusion in our terms. In a classic
pinhole camera model, view rays emanate from a camera at position
vy and interact with a scene. Conceptually, each pixel targeted in
rasterization corresponds to a view ray that extends to the far plane.
If the view ray intersects a solid object along its path, we call this
event an occlusion, since the object blocks visibility of any other
objects further along the ray. Depth buffering retains the closest hit
along each view ray as the visible primitive for the given pixel.

We define an occlusion interval as a segment along the view ray
between the entrance and exit points of the ray with respect to an
occluder object. In Figure 4, left, an occluder blocks a view ray from
vo towards s;. The ray observes an occlusion interval between f and
b. For a view ray that grazes the silhouette s, the occlusion interval
collapses into a single point at s.

Note that the use of a far plane at finite distance is a significant
difference in formulation from the original occluder shrinking pa-
per [Wonka et al. 2000], which assumes the far plane at infinity.



Trim Regions for Online Computation of From-Region Potentially Visible Sets

._(R’* fR’*
fully fully
occluded Jito v. visible

((R’,«,:\u
RNU

R
partially
visible

Fig. 5. (left) An occluder O spawns a trim region at silhouette s. After removing the trim region, the remaining parts of O still occlude portions in the back
(gray and red areas). A trim region (yellow) of the occludee O’ at s’ is entirely occluded by O and does not contribute to the PVS. (middle) No intersection
with the umbra produces a fully disoccluded occludee, while an intersection (right) produces a partly disoccluded occludee.

Their assumption is overly conservative, since every practical scene
has a finite extent. With a finite far plane, we can minimize the
trimming applied to the occluder to the strictly necessary amount,
leading to stronger occlusion effects and a smaller PVS than if a far
plane at infinity was used. Finite far clipping reduces the computa-
tional cost with a negligible impact on conservativeness, as narrow
erosions around far-away silhouettes contribute little to the overall
PVS (see Section 6).

3.2 Disocclusion

The erosion theorem [Décoret et al. 2003] holds that visibility after
a camera translation is equivalent to visibility without a camera
translation when considering a shrunk (eroded) occluder. Any cam-
era translation, as considered in the occlusion theorem, gradually
changes the occlusion intervals along view rays. Provided the cam-
era moves far enough, a view ray emitted from the new camera
position may not observe the same occluder or any occluder at all.

Consider the example in Figure 4, left. At camera position vy, a
view ray grazes the silhouette s and hits the far plane at sg. Rays
aimed to the left of the silhouette encounter occlusion intervals,
while rays to the right, such as from vy to sz, do not hit the occluder.

Let the camera move away from the original view point v( along
a vector A to a new position v;. A ray emitted at v; grazes s and
hits the far plane at s;. Compared to vy, several rays emitted at v;
now reach the far plane behind the occluder between sy and s;. We
call this phenomenon disocclusion around s, because of the role the
silhouette s plays. The penumbra P is the disoccluded area formed
by s, sg and s, while the umbra U is the fully occluded area formed
by b, s and s;.

3.3 Trim regions

Our goal is to compute from-region visibility in a viewcell centered
at v that supports camera translation by a distance of up to |A|.
This means that we must force the same disocclusion by shrinking
O that a camera translation by A would cause.

Revisit Figure 4, left: We established that the disocclusion at sil-
houette s reveals $. At position vy, the portion of the occluder

delineated by f, b and s, which we call the trim region R, is respon-
sible for blocking view rays extending towards $, while view rays
extending from v; towards # are not blocked. Consequently, if we
remove R from the occluder, we obtain the visibility for v; directly
from testing view rays emitted at vo against the trimmed occluder.
Primitives inside U are guaranteed to be invisible; only primitives
in P can be observed and be part of a PVS at vy. Note that erosion
with the trim region also covers all possible camera positions be-
tween vo and vq, which we shall call the viewcell V. Regardless of
where we place the camera in V, no view ray that grazes s can hit
the far plane outside .

So far, we have only considered the effect of a translation by A.
If the camera moves along —A, the silhouette s becomes irrelevant,
since it does not cause disocclusions. A disocclusion around s is
only relevant if the angle between the normal n at s and the vector
A is acute, i.e,n- A > 0. Consequently, if we want to form a viewcell
as a neighborhood around vy that extends in arbitrary directions,
we have to consider all silhouettes of the occluder observed from vy.

3.4 View frustum adaptation for viewcells

Moving the camera from v to any vy necessarily changes the view
frustum, so that portions of the scene clipped away for the original
view frustum at v are now included in the new view frustum
established at vi. As suggested by Wonka et al. [2001, Figure 6],
a new frustum valid for all viewpoints v € V can be created by
moving the viewpoint back to v by a distance z along the negative
optical axis of the original frustum formed at v¢ (Figure 4, middle).
The distance z = |A|/tan« is a function of A and the subtended
angle 2« of the frustum. For a frustum with an aspect ratio not equal
to one, the maximum subtended angle of the vertical and horizontal
directions may be taken to ensure a conservative computation.
Replacing the set of frusta formed by v € V with a single frustum
at v, requires adaptation of the trim region, as a camera at v,
observes different occlusion intervals. Figure 4, middle, shows a new
view ray from v, towards sj. As the silhouette s and its projection
s1 remain unchanged, we must only form a new trim region R



. Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

Fig. 6. Two objects are depicted from the camera’s point of view. The blue
object partially occludes the red object, with the silhouette edge & of the
blue object forming the boundary in perspective space. As the camera is
translated, a larger portion of the red object becomes disoccluded. The rate
of disocclusion at & is highest in the direction of the edge normal n.

spanned by s, f; and b.. Depending on the location of s , R, can be
larger or smaller than R or R, = 0 in extreme cases.

The new frustum also contains the double-cone-shaped viewcell
(orange area in Figure 4, right) that our algorithm supports, which
consists of a cone with radius A which has its its apex at v, and its
base in the plane containing vy and vi, and another cone mirrored
around that plane. When computing the PVS from v, we can freely
move the camera within V. If we only required that the viewpoint be
at most A from vo, we could use a sphere centered at vy with radius
|A] as V (dashed blue semicircle in Figure 4, middle). However, we
must also require that view rays emitted from within the viewcell
which graze s must not enter U (as the blue view ray at v, in Figure 4,
middle). This is only guaranteed for viewpoints inside the double-
cone viewcell. Previous work [Hladky et al. 2019a] demonstrates
that increasing the field of view during the PVS computation on the
frustum covers the rotational dimensions of the viewcell.

3.5 Multiple trim regions along one view ray

In the discussion of disocclusion above, we have only considered
points on the far plane, which represents the maximum extent
of the visible scene. In practice, we are interested in object pairs
encountered anywhere along a view ray, provided that they form
an occluder-occludee relationship.

Let v, be the viewpoint of the enlarged viewing frustum corre-
sponding to a viewcell of diameter A. From v, we determine the
trimmed occluder O, = O \ R, and find the corresponding fully
occluded region U, enclosed by s, s; and b, (Figure 4).

Scene points inside the umbra are not visible from anywhere in
the viewcell V. We are interested in the occluder fusion of O with
a second object O’ at a distance farther than O from v.. For this
purpose, we determine the trim region R, of O with respect to v,
and classify its placement inside or outside of U.

If O, fully occludes R despite being trimmed by R. (Figure 5,
left), we can unconditionally discard O’. Conversely, if R is not
occluded by O, at all (and does not intersect /), as shown in Figure 5,
middle, R} creates its own umbra U’, which is disjoint from U.

If U partially intersects R/, we require a more complex geometric
analysis. Recall that we have made sure that, even if we trim O by
R+, no view ray from v; can enter U. Consequently, any portion
of O’ that lies within U must not be disoccluded by trimming O’.
In other words, a ray must ignore any objects encountered while

e
View
direction

F

Image space

Fig. 7. (left) A cubical occluder seen from the side, (middle) the occluder as
seen in image space, (right) trim regions (yellow) generated by displacing
silhouette edges by d along their negative normal.

passing through an umbra, but the ray is not blocked or terminated.
Upon leaving the umbra, ray casting continues, and further objects
encountered along the ray are considered visible. For O’, this means
that its trim region must be formed so that it allows rays to pass
only if they are neither constrained by a previous umbra nor by O’
after O’ is trimmed at its silhouette s’.

Consider the example in Figure 5, right. The occluder silhouette
s generates a trim region and an associated umbra. A part of the
occludee trim region at silhouette s’ overlaps the umbra of s. Clearly,
parts of the trim region for s’ cannot be observed from vy, since
they are inside the umbra of s. Consequently, we must not discard
the occlusion intervals for those rays. However, we must not classify
the region R, N U as visible, either.

The remaining portion of the trim region at s’, i.e, R, \ U, is
retained and used to trim O’. Trimming O’ with respect to R}, \ U
(rather than just R;) corresponds to the occludee shrinking opti-
mizations proposed by Décoret et al. [2003]. Our method is the first
to turn this idea into a working implementation, and our results
demonstrate the performance improvements it enables.

The resulting trimmed occluder O’ \ (R} \ U) is merged with
previously encountered trimmed occluders and applied to determine
visibility of objects further away. If consecutive trim regions for
a single view ray do not overlap in depth, we compute occluder-
occludee relationships as described. In real-life scenes, however,
inaccurate models or non-manifold meshes may intersect, which
can lead to trim region overlap. In such an event, we fuse overlapping
trim regions so that the closest f and the farthest b of the overlapping
occlusion intervals form a single trim region.

Note how we have avoided shrinking the entire occluder, as typ-
ically required in previous work on occluder shrinking or virtual
occluders. In comparison to occluder shrinking, occluder trimming
can be implemented in a much cheaper way. Nevertheless, it sup-
ports detailed object self-disocclusions and can handle non-convex
objects. One caveat is that the disocclusion under consideration
is caused by the locally identified silhouette. If the camera offset
wanders too far, a different silhouette may be revealed, and a new
trim region would be required to analyze it. Hence, we can expect
correct results within a modestly sized viewcell, but an increasing
amount of outliers the larger the viewcell becomes. This crucial
relationship of viewcell size and PVS will be studied in Section 6.

3.6 Optimal trimming direction

So far, we have considered resolving only a single occluder-occludee
relationship at a silhouette location s. To determine a complete PVS,



Trim Regions for Online Computation of From-Region Potentially Visible Sets

we must globally trim along the entire silhouette of an occluder and
consider all possible occluder-occludee relationships. In particular,
while we assume |A| to be held constant, the direction of A leading
to the largest disocclusion (needed to estimate a conservative PVS)
will depend on the relative position of occluder and occludee.

Figure 6 shows an occluder O (blue) that is rendered in front
of an occludee O’ (red). Silhouettes of polygonal meshes in three-
dimensional space are formed by chains of edges that separate front
and back polygons [Benichou and Elber 1999]. In our example, O
and O’ are separated by the silhouette edge & of O.

Consider the effect of a camera translation A on the relation be-
tween the two objects. The projection s; of a point s on & to the
far clipping plane moves dependent on the direction of A. After
projection to the 2D image plane, a maximum disocclusion (farthest
distance between s and s1) is obtained when aligning A with the
normal n of the silhouette edge & that points away from the oc-
cluder. With this observation, we obtain the direction —n in which to
displace & to obtain the trim region which maximizes disocclusion.

Unfortunately, as we have seen in Section 3.5, the order in which
occluders are trimmed can influence the shape of the trim regions.
Consequently, we cannot simply apply trimming to all occluders
indiscriminately, i.e, in random order. We first need to establish
a depth order of the scene as seen from v, and use this order to
incrementally resolve occluder-occludee relationships to determine
exactly which regions need to be trimmed away and which portions
of the scene become part of the PVS.

4 VISIBILITY CULLING ALGORITHM

In this section, we describe the implementation of the trim region
algorithm, which, like most visibility algorithms, is inherently a
depth-sorting problem. Global sorting of all occlusion intervals
and trim regions for the entire scene is certainly possible [Hladky
et al. 2019a], but very inefficient. Instead, we propose to apply a
divide & conquer strategy to achieve better scalability, especially
by leveraging early ray termination. For this purpose, we wrap the
scene geometry with an octree and extract view-dependent layers of
nodes from the octree at runtime. Each layer contains the maximum
number of nodes that have been fully disoccluded by removing the
layers in front. Since nodes inside a layer do not occlude each other,
we may process the primitives of the entire layer in parallel.

The overall algorithm consists of five major phases (Figure 8),
labeled P0-P4, where PO runs on the CPU, while P1-P4 each consist
of one or more rasterization or compute passes on the GPU. While
PO and P4 are executed once per frame (before and after processing
the layers, respectively), P1-P3 are executed once per layer.

PO generates drawbuffers corresponding to the layers of the octree
as seen from the current point of view (Section 5). P1 preprocesses
the geometry of the current layer and prepares geometric primi-
tives for the subsequent stages. This includes the geometry of the
scene itself, the trim regions and the umbrae. P2 rasterizes the ge-
ometry prepared in P1. While P1 and P2 are merely preparatory
steps, P3 implements the core trim region logic. It uses information
rasterized in P2 to form and analyze occlusion intervals, ultimately
determining potentially visible geometry. Even more importantly,
it determines whether a ray is fully occluded and can be terminated

after the current layer. Finally, P4 harvests visibility information
accumulated during traversal of the layers to produce the final PVS.
Throughout the algorithm, the following data structures (see Table
1) are used to communicate between the phases:

e The trim region stencil indicates the state of a given pixel
(i.e, view ray), which can be untrimmed (no trim region has
been encountered yet), trimmed (at least one trim region has
been encountered) or sealed (after encountering a trim region,
the pixel has been found occluded by another primitive and
need not be investigated further). The trim region stencil is
initialized with untrimmed before the first layer.

The active pixel stencil indicates if new information regarding
a given pixel location has been found in the current layer.
The active pixel stencil is cleared before the first layer, set
in P2 for pixels that receive new data, and reset in P3 for all
pixels that have been processed.

The visibility buffer contains the visible fragments (stored as
depth+id) of rasterized primitives that have not been trimmed.
After finishing the last layer, the ids stored in the visibility
buffer form the bulk of the primitives contained in the PVS.
The trimmed primitives buffer contains a list of primitive ids
that partially or fully lie in a trim region and therefore have
been suppressed from rasterization into the visibility buffer.
The trimmed primitive buffer collects these ids and is later
merged with the visibility buffer into the final PVS.

The visibility buffer collects visible primitives in screen areas not
covered by a trim region, where the first frontface already leads to
full occlusion of the view ray. In areas covered by a trim region,
multiple frontfaces may be classified as visible; these are all inserted
into the trimmed primitives buffer directly.

4.1 Geometry generation

Phase P1 consists of a single compute pass that generates four draw
buffers from the geometric primitives associated with the current

Name Type P1| P2 | P3 | P4
Layer’s primitives Draw buffer R

Trim region quads | Draw buffer W | R

FF primitives Draw buffer W | R

BF primitives Draw buffer W | R

Umbra quads Draw buffer W | R

Trim regions Depth k-buffer W | RW
Frontfaces D+ID k-buffer W | RW
Backfaces Depth k-buffer W | RW
Umbrae Depth k-buffer W | RW

Trim region stencil | Image RW | W
Active pixel stencil | Image W | RW
Visibility buffer Depth+ID w R
Trimmed primitives | Buffer W | RW
Complex pixels Draw buffer RW

Table 1. Overview of the buffers used by the algorithm (FF/BF = frontfac-
ing/backfacing in clip space, D+ID = depth + ID, R = read, W = write, RW =
read/write)



Per Frame
Phase 0

k-Buffer

Image

Buffer

Generate
Octree
Layers

Layer
Primitives

Geometry

Generation

Per Frame
Phase 4

Trimmed
Primitives

P
7]
©
£
o
Rasterlze Rasterlz Rasterlz Rastenz
Trim Front Faces) (Back Faces Umbras
Reg|ons
~ ¢ y ¢w ¢ A ¢ v
b
3
9|8 Trim Region Front Face Back Face| Umbra
M Depth Depth + ID| Depth Depth
| [ [ [
g vV ¥
= Trim Active -
) . . Visibility
o Region Pixels Buffer
Stencil Stencil
L —
:
PY Pixels
7] —
®©
£
o Resolve
Pixels
Parallel

Fig. 8. The trim region algorithm commences in five phases: P1 determines

the octree layers on the GPU. P1 generates the draw buffers for each layer,

and P2 renders them. P3 resolves the resulting trim sequences. P4 gathers
the results into the final PVS.

Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

Layer (i) € i-> Layer (i+1)
< : f Ray R2
w#‘ -

T I I T T Ray R1
fl tl bl fZ bZ f3 b3

+1 +1

T T T | T l T Ray R2
fl t] bl f2t7 bZ f3 b3

T T T T T Ray R3
fl t\ bl f2t7 bZ f3 t? b3

Fig. 9. Example trim sequences for three view rays. The top part of the
figure shows the geometric arrangement, while the bottom part shows the
trim sequences according to the depth values in clip space (the optical axis
in the example is assumed to be aligned with R2). R1: A validated interval
fi/t1/b1/u is found — fi is added to the PVS; f; is ignored; b; is classified
as a terminator face — f3 is ignored. R2: Validated intervals fi/t1/b1/u;
and f2/t2/by/u;y are found — fi is added to the PVS; f; and f3 are ignored;
no terminator face is found in layer (i), but bs is classified as terminator
face in layer (i + 1). R3: Like R2, but f3 behind u; at the sequence trail is
classified as a possible frontface of a validated interval and carried over to
layer (i + 1), where a validated interval f3/¢3/bs3 is found.

layer. First, a draw buffer containing the trim region quads is cre-
ated by extruding each silhouette edge inwards, along the negative
normal of the edge in image space (Figure 7). We only include silhou-
ettes as observed from v,. In our experiments, including all edges
that could potentially become silhouettes within the viewcell did
not significantly improve the accuracy of the PVS, but processing
these redundant entries considerably reduced the performance.

Next, the layer’s primitives are transformed into clip space and
culled using the Cohen-Sutherland [Hill and Kelley 2006] method.
Surviving primitives are classified as frontfacing or backfacing, and
stored in draw buffers for FF and BF primitives, respectively.

A final draw buffer contains umbra quads, which represent the
separating faces between umbra and penumbra (Figure 4, left). These
are spanned between the two vertices of the silhouette edge and
the projections of the opposing extruded edge on the far plane. If a
primitive lies between this face and the frontface of the occlusion
interval corresponding to the trim region, it is guaranteed to be
occluded with respect to the trimmed occluder, so we discard it.

4.2 Geometry rasterization

In phase P2, we rasterize the draw buffers generated in P1. Since we
need to keep all rasterized fragments until the resolve phase P3, each
rasterization targets a k-buffer with (at least) a depth attachment,
accessed via an atomically operated counter. The dimension k is
chosen to reflect the expected maximum depth complexity per layer.
If a pixel has been marked sealed in a previous layer, we discard all
rasterization results for that pixel, as these results do not contribute
to the PVS. For every pixel written into a k-buffer, the corresponding
location in the active pixel stencil is set.

During rasterization of trim region quads, if a pixel is found to
be yet untrimmed, we set the trim region stencil to trimmed. For



Trim Regions for Online Computation of From-Region Potentially Visible Sets

S — N

R— N

a b 1 [

4«% S 4«%

4«% 4«% 4%

= = E
1 1 . =
1> 2.+ 1— 2 1| 2

i--»i 2 - 2 | 3
1 t
d 12 e 12 f 1| 2

Fig. 10. An example of more complex traversal in the octree. (a) We select the start node based on the view direction. (b) From the start node, we move
horizontally and vertically. We need to determine the appropriate neighbor nodes that would block other direct neighbors and process those first. (c) We
proceed with traversal, until we arrive at another ambiguous location. (d) We need to ensure not to enter nodes prematurely, i.e, nodes that must wait for
additional dependencies to be processed first. (e) All required neighbors have been processed. (f) We can move on and arrive at a final layer ordering.

rasterization of frontfacing primitives, we store not only depth,
but also primitive id in the k-buffer. Moreover, the frontfaces are
rasterized into the visibility buffer as well.

4.3 Occlusion interval resolve

Phase P3 resolves the k-buffers accumulated in the previous phase
to determine which primitives of the current layer should be added
to the PVS. It only acts on pixels that have been marked as active in
P2. Since the octree only provides approximate ordering, we first
need to locally sort the geometry encountered along each view ray
into matching occlusion intervals. Hence, we sort the frontface and
backface k-buffers by depth into a temporary trim sequence.

Forming and validating occlusion intervals. We scan the sequence
for simple occlusion intervals, i.e, frontface/backface pairs that are
immediately adjacent in the sequence. Given an ideal scene (con-
sisting of watertight non-intersecting polyhedra), we would only
encounter simple occlusion intervals. Alas, real scenes assembled
from a polygon soup can lead to multiple consecutive frontfaces or
backfaces. To deal with such poorly conditioned input, we adopt a
robust strategy that avoids false negatives (i.e, missed geometry that
should be in the PVS), while minimizing false positives (i.e, occluded
geometry that is needlessly included in the PVS). We first greedily
search for simple occlusion intervals with arbitrary depth [f;b].
If another frontface f” precedes f in the sequence, the interval is
extended to [f’; b]. Extending an interval at the front can only in-
troduce false positives, but not false negatives. Multiple consecutive
backfaces do not matter, since the backface will later be replaced
with an umbra. In a subsequent step, we validate the intervals iden-
tified so far. A validated interval must contain at least one fragment
t from the trim region k-buffer, i.e, f <t < b.

Fitting occlusion intervals with umbrae. For each validated interval,
we replace its backface with the corresponding umbra. All entries of
the trim sequence contained in the extended interval from frontface
to umbra are not visible and can be ignored. Finding the replacement
is simple, since there is a 1:1 correspondence of trim region to
umbra. As the umbra typically has a larger depth than the backface
it replaces, we must sort the sequence again by depth. After resorting,
we assign +1 to the frontface of a validated interval, and, —1 to the
umbra. All other entries in the sequence are assigned 0. A prefix
sum over the sequence reveals if any entity in the trim sequence is

affected by an umbra. If the prefix sum is larger than 0, such an entry
can be marked for deletion. Please see the examples in Figure 9.

View ray termination. Early ray termination is facilitated by look-
ing for a terminator face in the trim sequence. A terminator face
is a frontface or backface that is not contained in a validated in-
terval (prefix sum is zero). Since such a terminator face represents
untrimmed geometry; it occludes all further entries, and we need not
continue investigating the ray. Starting at the smallest depth value,
we visit the entries of the sequence in order until we encounter
a terminator face. Upon visiting an interval, all entries between
frontface and umbra are marked for deletion. This step is important
to avoid premature identification of terminator faces, in particular
when entries resulting from non-manifold geometry do not form
proper frontface/backface pairs.

Note that every validated interval is visited, irrespective of whether
its entries are already partially marked for deletion for being inside
another interval. The frontface of every validated interval is added
to the trimmed primitives buffer. If we find a terminator face, we set
the trim region stencil to sealed and abort further searching. If the
terminator face is a frontface, we add it to the trimmed primitives
buffer. If we cannot find a termination candidate, the residual trim
sequence is simply left in place to be resolved in subsequent layers.
In particular, an unfinished interval (a frontface at the end of trim
sequence) is not classified as a terminator face immediately, but
instead carried over to the next layer.

Sorting implementation. We have two options to sort the k-buffer
entries on the GPU, either sequentially with one thread per pixel
or in parallel with multiple threads collaboratively working on a
single pixel. Since the k-buffer length can drastically vary across
screen space and between layers, neither strategy is optimal. Hence,
we employ a hybrid sorting strategy that involves two compute
passes. The first pass launches one thread per pixel and inspects
the length of the trim sequence. If it is shorter than a threshold
(empirically determined as N = 8), the thread sorts its sequence
sequentially. Otherwise, we flag the pixel for parallel sorting by
writing the pixel location to a “complex pixels” draw buffer (Fig-
ure 8, P3) with compute indirect commands. The second compute
pass spawns one compute group for each complex pixel to apply
efficient bitonic sorting. Since compute groups typically operate
in lockstep (for a group of 32 threads), the trim sequence length
is ideally a multiple of 32. Each primitive type fills a k-buffer of



. Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

~

Viking village (3.5M) Robot lab (2.7M)

Sponza (0.5M)

Sun temple (0.6M) City (15.7M)

Fig. 11. We used five test scenes in our evaluation, which are shown here with primitive counts

fixed length 32, which we consider during the octree build step to
prevent overflows. Clearly, there is a trade-off between memory
consumption and performance: Deeper octrees subdivide the scene
into smaller chunks and require smaller k-buffers, but potentially
do not utilize thread groups efficiently.

4.4  PVS gathering

After all layers, a compute shader collects the final PVS in phase P4.
It visits all pixels of the visibility buffer and appends them to the
trimmed primitives buffer, which becomes the final PVS buffer.

5 OCTREE LAYER PEELING

Our visibility culling algorithm peels layers off an octree covering
the scene. Each layer consists of the nodes that can be traversed
in parallel, since they do not overlap in image space. We impose
an upper limit on the number of primitives allowed per octree
node [Greene 1995]. Hence, the depth complexity of trim regions
inside a node is bound by a small number. The layer generation
algorithm described in this section runs in <1 ms on a single CPU
core for octrees with thousands of nodes.

5.1

The octree is created by subdividing nodes based on the axis-aligned
bounding boxes (AABB) of the objects in the scene. If a node contains
an AABB that would fit fully into a child node, the node is subdivided,
unless a maximum depth is reached. Then, we alternate between
two procedures until convergence:

1. Sorting. We sort the primitives of an object into the correspond-
ing octree nodes. A primitive that overlaps multiple nodes is sorted
into each of the relevant nodes.

2. Balancing. Since we must traverse the octree using neighbor-
hood relationships, an excessive level difference between neighbors
is inefficient [Duchaineau et al. 1997]. Therefore, we constrain the
difference between neighbors to no more than two levels (i.e, a
node may have up to 16 neighbors per face). Violating nodes are
subdivided, until no more violations are found.

We only consider static objects during octree generation. At run-
time, we lazily sort any dynamic (e.g, animated) objects that possibly
traverse octree node borders into the respective octree nodes ac-
cording to their current bounding box in each PVS frame.

Octree generation

5.2 Layer generation

The purpose of the octree layer generation is to identify a minimum
partitioning of octree nodes into layers, such that nodes in a layer
do not overlap in image space and thus can be traversed in parallel.

10

This requirement can be trivially fulfilled if nodes are processed
sequentially [Greene et al. 1993], but at a high cost of one separate
drawecall per node [Serpa and Rodrigues 2019]. Finding the minimal
number of layers (and, hence, drawcalls) is a combinatorial problem
significantly more complex than the sequential solution.

The method of Laine [2005] uses a simple FIFO queue to find
the minimal layers. Dequeued nodes are tried repeatedly, until all
their dependencies have been visited (Figure 10). Unfortunately, the
number of times a node has to be re-visited in Laine’s method grows
rapidly with octree size, leading to poor runtime performance.

We avoid this problem by enqueuing only nodes with fulfilled
dependencies. As a start node, the one closest to the viewpoint
among those nodes intersecting the near plane is enqueued. From
then on, nodes are processed in FIFO order. A node is dequeued, and
the layer count for each neighbor is updated to at least the current
node’s layer plus one. Next, we mark the neighbors’ faces which
touch the current node as fulfilled dependencies. Neighbors which
have all their dependencies fulfilled are enqueued. If a processed
node is touching nodes which have a higher degree of subdivision
than the node itself, these nodes are considered strictly in layer order,
i.e., only nodes directly touching the current node are examined. In
addition, we cull all nodes against the view frustum at v..

6 RESULTS

We evaluated the performance of our method for various scenes
and parameter choices. Tests were run on a desktop computer (CPU:
Intel i7-7770 with 64 GB RAM, GPU: NVidia GeForce RTX 4090,
Windows 10). We assumed a field of view for the target frames of 60°
and an extended field of view of 90°, allowing head rotations up to
+15°. We performed both the PVS computation and the rasterization
of target frames at a resolution of 1920 x 1080 pixels.

We used the test scenes shown in Figure 11. For every scene, we
recorded an animated camera path, each with a length of 400-600
frames, for reproducible measurements. All scenes were enclosed
in an octree with a subdivision depth of 3, except City, with a depth
of 4.

In our test paths, we assume a running speed of 3 m/s and a frame
rate of 60 Hz, so the camera moves 5 cm between two frames. The
viewcell radius |A| was varied from 5 cm to 30 cm, as proposed by
Hladky et al. [2019a]. The height z = |A|/tan « of the viewcell cone,
which corresponds to the forward motion (Figure 4, middle) is equal
to |A| for 2a = 90°. Hence, for a forward motion of 5 cm per frame, a
PVS with a viewcell size of A is valid for a segment of |A|/5 frames.



Trim Regions for Online Computation of From-Region Potentially Visible Sets

? SAS: linear
4 extrapolation
/d 0Q/CHC++:
<—‘—,./ from point
V.

Fig. 12. The viewcells of all methods in our evaluation. While TR and COS
cover volumetric viewcells, SAS (red) linearly extrapolates the viewpoint
based on movement trajectories. Occlusion query methods like CHC++ are
from-point methods and compute a visible set from a single point vy.

6.1

As discussed in Section 2, there is a limited choice of methods that
can compute a from-region PVS online. For example, it was recently
demonstrated [Hladky et al. 2019a] that the 2.5D Instant Visibil-
ity method of Wonka et al. [2001] is unable to handle generic 3D
scenes properly. Hence, we compare our trim region method (TR)
to two recent methods that work on 3D scenes, namely, camera-
offset space (COS) and shading atlas streaming (SAS), and to one
from-viewpoint method, occlusion queries (OQ), which benefits from
dedicated hardware support on the GPU.

COS [Hladky et al. 2019a] is a recent visibility method that tar-
gets the same use cases as ours. Its occlusion data structure is based
on global per-pixel linked lists of all rasterized fragments. Unfortu-
nately, technical limitations prevented us from running the original
COS code on current hardware. In order to make a meaningful com-
parison to the performance numbers reported originally, we used
some of the original scenes and the same settings. According to
public benchmarks [Wilson et al. 2023], we estimate that the GPU
we used (NVIDIA RTX 4090) is approximately 2 faster than the one
used in the COS paper (NVIDIA Titan Xp). We report the original
times and hypothetical times accelerated by this factor.

SAS [Mueller et al. 2018] is a streaming rendering system which
relies on extrapolating a user’s viewpoint several frames into the
future using first-order prediction, followed by sampling an EVS via
rendering a standard visibility buffer for each extrapolated position.
A from-region PVS is approximated as the union of EVS samples.

0Q is a from-viewpoint method which relies on testing bounding
volumes of scene portions against the depth buffer by submitting
occlusion queries to the GPU. The CHC++ method [Mattausch et al.
2008] is an improved OQ method that heuristically aggregates these
calls to reduce the number of draw calls that require CPU-GPU
synchronization. We have implemented a version of OQ that uses
our octree peeling instead of CHC++-like heuristics for schedul-
ing the queries. Like CHC++, occlusion queries are submitted for
boxes enclosing the octree nodes. However, in our version, only
a minimal number of queries is issued, since a whole octree layer
can be aggregated into one query. The octree depth was empirically
set to eight to obtain a PVS tightness comparable to that delivered
by TR. Since OQ is a from-viewpoint method, it does not create a
from-region PVS for comparison. Therefore, we report the runtime
of its from-viewpoint computation.

Comparison to state-of-the-art methods

11

Table 2. The k-buffer memory requirements for Trim Regions at a resolution
of 1920x1080. Our memory footprint increases linearly with the number of
active pixels due to fixed k-buffer depth and iterative layer processing. The
average trim sequence length remains managable even for larger viewcell
sizes due to our early stopping and divide-and-conquer strategies.

Scene | |A| Pixels | Sequence | Allocated/used
Length | memory (mb)
Viking 5 410495.1 12.2 250.5/32.7
village 10 509036.3 12.1 310.7/41.6
30 588554.0 15.8 359.2/67.4
Robot 5 418036.2 8.3 255.2/22.4
lab 10 593784.8 8.4 362.4/32.7
30 792573.7 11.2 483.8/60.3
Sponza 5 395954.7 10.8 241.7/27.5
10 599549.3 10.9 365.9/42.4
30 923812.6 12.6 563.9/77.8
Sun 5 551648.7 16.2 336.7/ 55.8
temple 10 804346.3 16.5 490.9/ 80.8
30 | 1133150.7 17.7 691.6/128.3
City 5 167540.2 17.8 102.3/18.4
10 288516.1 17.2 176.1/30.7
30 5414914 16.1 330.5/54.3

6.2 Speed

We measured the runtime as a function of scene and of viewcell
size. Figure 13 shows how the overall runtime of TR can be broken
down into phases PO to P4. The overall times to produce a PVS are
relatively uniform in the 50-60 Hz range, with a modest increase of
around 10-20% when increasing the viewcell size sixfold from 5 cm
to 30 cm. Among the phases, P1 (geometry generation) dominates
the runtime, consuming about 60-70% of the allotted time. A large
portion of this time is likely related to the fact that P1 is at the tip of
the GPU pipeline and must wait for the previous layer to complete.

At our assumed movement speed of 5 cm per frame at 60 Hz,
we can expect that the PVS remains valid between one frame (16.7
ms) at a viewcell size of 5 cm, and, six frames (100 ms) at 30 cm
viewcell size. For the observed worst case in the PVS computation
runtimes, 22.26 ms, this means a break-even at a viewcell size of
only 6.7 cm (corresponding to 1.3 frames). Using a larger viewcell
than 6.7 cm will proportionally increase the benefits of predicting
the PVS. Even though this number does not include any additional
server-side processing of the PVS, we may assume that our method
is well suited for streaming applications in terms of its runtime
performance.

Figure 14 reports the overall runtime of TR compared to its com-
petitors. For SAS, we chose the sample rate at one EVS sample for
every 5 cm of viewcell size. As can be expected, the runtime is
roughly linear to the number of EVS samples and the scene size,
and, overall, very fast. However, as will be discussed below, the
simplistic predict-and-sample strategy of SAS is unable to support
large viewcell sizes without severe loss of quality.

Our estimated comparison with the runtimes reported for COS on
Viking village and Robot lab indicates a significant advantage of TR
over COS in terms of speed. COS can solve 4D visibility globally with



2 W Viking village PO
 Robot lab PO
mSponza PO
 5un temple PO

2 WCity PO

15
o HE B I L I L |
ms 5cm

10cm 30cm

m Viking village P1
Robot lab P1

mSponza P1

m Sun temple P1

m City P1

Viking village P2
Robot lab P2

m Sponza P2
Sun temple P2
City P2

Viking village P3
Robot lab P3

m Sponza P3
Sun temple P3
City P3

Viking village P4
Robot lab P4
Sponza P4

Sun temple P4
City P4

Fig. 13. Runtime of TR for various scenes and viewcell sizes |A|, reported
in ms, broken down by algorithm phase, where P0 is octree layer computa-
tion, P1is geometry generation (which includes the layer-to-layer synchro-
nization overhead), P2 is geometry rasterization, P3 is occlusion interval
resolution, and P4 is PVS harvesting.

virtually no errors. Alas, its expensive linked-list representation lets
memory consumption grow rapidly, and performance deteriorates
rapidly as the viewcell size increases.

Our memory requirements are mostly driven by the k-buffers.
However, our divide-and-conquer approach enables us to use fixed-
size k-buffers. The early stopping strategy significantly reduces trim
sequence lengths, i.e, the union of all k-buffer entries per pixel. Ta-
ble 2 provides an analysis of the memory consumption. The viewcell
size dictates the number of pixels relevant for trimming, but has
little impact on the average trim sequence length. Compared to
COS, our trim sequences are much shorter and less sensitive to the
viewcell size, with fewer active pixels. Iteration over octree layers
can work on smaller, distinct sequences iteratively and terminate
pixels much earlier. Scenes with higher depth complexity (e.g, City)
require a deeper octree to prevent overflow. Fortunately, a deeper
octree only impacts runtime, but has hardly any storage costs.

Its high computational cost limits the application of COS to small
viewcell sizes, where it directly competes with TR. In comparison,
TR can only solve 4D visibility in the local neighborhood of an
object silhouette, but at a much lower computational cost. Please
refer to Section 6.4 for an analysis of the resulting quality.

The runtimes of OQ, despite delivering only a from-viewpoint
and not a from-region PVS, are substantially higher than those of
SAS and TR. The main slowdown that affects hardware occlusion
queries is caused by the waiting times induced by the layer-to-
layer synchronization. In TR, at most 6 (octree depth 3) or 14 layers
(octree depth 4) suffice to generate a reasonably tight PVS, since
the P3 phase of TR performs local depth sorting inside each layer.
In contrast, OQ requires an average of roughly 80 layers (octree
depth 8) to produce a similarly tight PVS and suffers excessively
from synchronization.

6.3 PVS size and tightness

Important performance indicators for the efficiency of a PVS method
are its size and tightness. We denote the primitive count of a scene as
SC and the primitive count of the PVS determined by our TR method
as TRC. Moreover, we determine the primitive count GTC of the
ground truth PVS of a viewcell by dense sampling, i.e., we compute

12

Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

TR cos cos*  msAs  e0Q
s0
100
. . .
& ) & . . ° . . .
I I. I. I.
ms  5cm  10cm  30cm Sem  10cm  30cm Sem  10cm  30cm Scm  10cm  30cm Scm  10cm  30cm

Viking village Robot lab Sponza Sun Temple City
Fig. 14. Runtime comparison for various methods, scenes and viewcell sizes
|A], reported in ms. “COS*” (yellow) is the time of “COS” (light yellow)
scaled by 0.5% to estimate runtime on the modern RTX 4090 GPU used in
our experiments (data only available for Viking village and Robot lab). “0Q”
(orange line) gives the runtime of the from-viewpoint OQ method, which

has to recompute a new PVS for every frame.

Table 3. “FN”and “FN*” indicate the rate of false negative primitives without
and with suppression of unreliable primitives, respectively.

Viking Robot Sponza Sun City
Village Lab Temple
|A]| FN | EN*| FN | FN*| FN | FN*| FN | FN*| FN | FN*
5 | .031| .013| .048| .046| .029| .023| .015| .013| .044| .024
10 | .031| .014| .047| .044| .030| .024| .017| .015| .043| .023
30 | .037| .019| .050| .047| .048| .038| .032| .028| .040| .022

the union of primitives contained in 200 EVS samples uniformly
spaced in a given viewcell. As pointed out by Hladky et al. [2019a]
and earlier by Wonka et al. [2006], this only approximates a true
PVS, but the level of accuracy is sufficient (typically >99%) to allow
using it to make meaningful comparisons.

The PVS size of the ground truth is given as GTC/SC, and the
PVS size of TR is given as TRC/SC. This tells us which viewcell size
is still acceptable: A larger viewcell size means that the PVS remains
valid longer, but at the prize of having to handle a larger PVS.

Moreover, we investigate the tightness achieved by a particular
PVS method. Tightness is related to the rate of false positive prim-
itives, which are included in the PVS, but never actually become
visible (see Figure 1). If FP denotes the false positive primitive count
of TR, we define the false positive rate as FP/GTC, i.e., the factor
by which the PVS is increased. Figure 15 reports the average PVS
size and tightness for various scenes and viewcell sizes.

Tightness is reported without (FP) and with (FP*) suppression
of unreliable primitives. For the latter, we ignore all tiny or slith-
ery triangles in the computation which, after projection to image
space, have a size of less than one pixel along any of their three
edges. Such primitives frequently produce zero fragments during
rasterization, despite having edges that may be hundreds of pixels
long and an area equivalent to dozens of pixels. In the FP* rate,
computed as FP*/GTC*, we omitted such primitives in all counts to
better understand the influence of poor geometric conditioning on
the results. Robot Lab suffers most from unreliable geometry due to
its numerous thin, elongated triangles, e.g, at rounded corners and
coplanar, slightly offset planes. The comparably large depth extent



Trim Regions for Online Computation of From-Region Potentially Visible Sets

30

B TR size
25

GT size
20
15
10
: 17 I
% of full scene

3,5

3
2,5
2
1,5
1
| | Il
0

xground Scm 10cm 30cm  5cm 10cm 30cm  5cm 10cm 30cm  5cm 10cm 30cm  5¢cm 10cm 30cm
truth Viking village Robot lab Sponza Sun temple City

M FP rate

4,5
FP* rate

4

Fig. 15. Average PVS size tightness for various scenes and viewcell sizes
|A]. In the top chart, “TR size” and “GT size” indicate the percentage of
the full scene placed in the PVS of the trim region method and the ground
truth, respectively. In the bottom chart, “FP rate” and “FP* rate” indicate
the false positive rate (as a multiple of the ground truth) without and with
suppression of unreliable primitives, respectively.

of the City scene has a similar effect: Triangles of far away buildings
project onto few (if any) pixels, making them unreliable.

We see that the ground-truth PVS size depends on the viewcell
size, but is generally a few percent (1-8%) of the total scene size,
except for Sponza, which is too small overall to fit the pattern.
The FP rate suggests that the PVS of TR is 1.7-3X larger than the
ground truth, but the TR size still represents a small percentage
(1-12% except for Sponza) of the overall scene size. Consequently,
we can expect 1-2 orders of magnitude speed-up when processing
(i.e., rendering, streaming, etc.) the resulting TR PVS instead of the
original scene. These numbers also compare favorably to the state
of the art. For example, the PVS size of TR for Robot lab is about 9%
of the full scene, while COS reports a PVS size of 17%, i.e., almost
twice the size. OQ determines visibility on the granularity of octree
nodes, as opposed to primitive (group) granularity, which makes it
very dependent on the octree depth. A shallow octree delivers too
many false positives to be useful, and a deep octree makes OQ slow.
At the chosen depth of eight, OQ (with runtimes of 20-70 ms) had
about 2-3X the FP rate of TR.

The driving factor for false positives is our conservative strategy.
Whenever we face situations that are difficult to resolve (e.g, due to
non-manifold or non-watertight meshes), our heuristics are tuned
towards avoiding false negatives at the expense of more false posi-
tives. We close as many intervals as possible by merging unassigned
single front- or backface entries into existing intervals and poten-
tially trim more than necessary. In rare cases, a trim region is larger

13

600,0
e=@==\/iking village FNG = @=Viking village FNG*
==@==Robot lab FNG = @= Robot lab FNG*
O-= Sponza FNG O~ Sponza FNG*
500,0 e==@==Sun temple FNG = @=Sun temple FNG*
= City FNG ©= City FNG*
400,0
300,0
200,0
100,0
0,0
pixel 5 10 15 20 25 30

Fig. 16. Average false negative pixel count per frame for all possible views.
FNG (solid lines) show results with unreliable triangles; FNG™* (dashed
lines) shows results without unreliable triangles. When applying the cut-off
suggested by Wonka et al. [2006] of roughly 100 pixels, a viewcell size of
15-20 cm can usually be supported without any noticeable errors.

than the associated feature. In a similarly small number of cases, we
potentially assign unrelated intervals from unaffected parts of the
same object to this trim region, which adds to the FP rates. While it
is possible that the face separating U and P is closer to the camera
than the backface associated with the trim region, this is extremely
rare, since it requires the backface at the silhouette being almost
parallel to the view ray grazing the silhouette. As before, we trim
slightly more conservatively than necessary, at the cost of slightly
increasing FP.

6.4 PVS correctness

For the correctness of the PVS (and the resulting image quality), we
investigate false negatives, i.e., the number FN of primitives that
are incorrectly omitted from the PVS. We are most concerned about
the impact of false negatives on the quality of the final image, not
necessarily the absolute value of FN. Since we use rasterization
for both the PVS computation and for generating the final images,
we must expect that the finite numeric precision of a GPU leads
to results that differ in certain pixel locations to results that are
computed analytically. Consequently, two different GPU models
will rarely produce the exact same rasterized image.

Therefore, we focus on reporting pixel error rates, as suggested
by Wonka et al. [2006], who state that “The term conservative (or
even exact) visibility is actually quite misleading. Most algorithms,
though conservative in theory, are not conservative in practice due
to numerical robustness problems. This is especially true for algo-
rithms that rely on graphics hardware” They report a rate of <0.005%



\s Voglreiter et al., Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg H. Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg

Fig. 17. Challenging situations in Robot lab (top row, 210 false negative pixels) and Sun temple (bottom row, 344 false negative pixels). In each row, the left
column shows the full scene; the middle column shows the PVS computed by TR, and the right hand side highlights false negative pixels in red. The differences

to the full scene are not immediately apparent in the PVS rendering.

false negative pixels (corresponding to 103 pixels in our 1920 X 1080
frames) and found it to be negligible with respect to image quality
(i.e, an average observer would not notice the difference).

Figure 16 shows FNG, the average false negative pixel count per
frame, averaged over all 200 views used for the ground truth of this
viewcell. The data is plotted as a function of trim region size, once
with unreliable triangles (FNG) and once without (FNG*). Table 3
lists the false negative primitive rates FN/GTC and FN*/GTC".

The data for FNG shows that all our test scenes have less than
the desired 0.005% error rate up to trim sizes of around 15-25 cm. It
can be seen that the corresponding FN rates of 3-5% (Table 3) are
not linearly related to the pixel errors and reveal little about the
resulting visual errors. Residual false negative primitives mostly
result from not watertight or non-manifold models, or primitives
inside of closed objects. These primitives never contribute to the
object’s appearance, but they do complicate the resolving process.

The reader is invited to inspect Figure 17 for side-by-side compar-
isons between renderings of the full scene and the TR PVS. We chose
challenging locations with poorly modeled geometry in the front
(e.g, the crane arm in Robot lab contains self-intersecting geome-
try). The peak signal-to-noise ratio when comparing the left/middle
images is 63.3 dB for the Robot lab example and 58.0 dB for the Sun
temple example. In comparison, highest quality JPEG compression
typically achieves 50 dB, while 20-25 dB is commonly considered
acceptable in streaming applications [Thomos et al. 2006].

Concerning the other methods, COS does not suffer from false
negatives, but pays for this property with a high runtime. The an-
alytical approach of COS is probably only prone to floating point
errors, while TR additionally suffers from the issues that affect all
rasterization approaches. Very thin or small triangles potentially do
not occupy any fragments during rasterization and may not show
up in our PVS. This is a negligible issue for thin trim regions, as they
could only disocclude correspondingly thin portions of the scene.

14

0OQ has an acceptable false negatives rate, but mostly because
of greedily consuming large octree nodes, leading to high false
positives and poor performance. SAS misses a large portion of the
visible primitives for larger viewcell sizes (10% of the full scene
primitives for 5 cm and 25-30% of the full scene primitives for 30
cm), leading to severe visual artifacts. TR combines a low false
negative rate with a tight PVS and good performance.

7 CONCLUSION AND FUTURE WORK

We have presented a system for real-time generation of from-region
PVS for 3D scenes previously not addressed at this scale of com-
plexity. Our method constructs trim regions, i.e, volumetric regions
that force disocclusion, strategically placed in image space so that a
from-point geometry pass can identify a tight from-region PVS. This
allows us to use our method in streaming rendering or low-latency
virtual reality applications, where the PVS of a dynamic scene must
be identified a few frames ahead of time.

We see several directions for future work. Trim regions could be
extended to incorporate coarse-to-fine culling, operating first on
octree nodes as bounding volumes. Moreover, we could exploit the
novel GPU extension for simultaneous multi-viewport rendering to
efficiently subdivide the view ray space and reduce discretization
errors and required safety measures for trim region sizes. Finally, we
want to apply our method to other areas where visibility information
is beneficial, such as shadow rendering or global illumination.

ACKNOWLEDGMENTS

The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged. VRVis
is funded by BMK, BMDW, Styria, SFG, Tyrol and Vienna Business
Agency in the scope of COMET - Competence Centers for Excellent
Technologies (879730) which is managed by FFG.



Trim Regions for Online Computation of From-Region Potentially Visible Sets

REFERENCES

M Airey, J Rohlf, and Frederick Brooks Jr. 1990. Towards Image Realism with Interac-
tive Update Rates in Complex Virtual Building Environments”. ACM SIGGRAPH
Computer Graphics 24 (1990), 41-50. https://doi.org/10.1145/91385.91416

Fabien Benichou and Gershon Elber. 1999. Output Sensitive Extraction of Silhouettes
from Polygonal Geometry. In Proc. Pacific Graphics.

J. Bittner, V. Havran, and P. Slavik. 1998. Hierarchical visibility culling with occlu-
sion trees. In Proceedings. Computer Graphics International (Cat. No.98EX149). IEEE
Comput. Soc, 207-219. https://doi.org/10.1109/CGI.1998.694268

Jiri Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and Michael Wimmer.
2009. Adaptive global visibility sampling. In ACM SIGGRAPH ’09, Vol. 28. ACM
Press, New York, New York, USA, 1. https://doi.org/10.1145/1576246.1531400

Jiri Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. 2004. Coherent
Hierarchical Culling: Hardware Occlusion Queries Made Useful. Computer Graphics
Forum 23, 3 (9 2004), 615-624.

Jiri Bittner and Peter Wonka. 2003. Visibility in Computer Graphics. Environment and
Planning B 30, 5 (10 2003), 729-755. https://doi.org/10.1068/b2957

Jiri Bittner, Peter Wonka, and Michael Wimmer. 2005. Fast exact from-region visibility
in urban scenes. Proceedings of the Sixteenth Eurographics conference on Rendering
Techniques (2005), 223-230. https://doi.org/10.2312/egwr/egsr05/223-230

Christopher A Burns and Warren A Hunt. 2013. The Visibility Buffer: A Cache-Friendly
Approach to Deferred Shading. Journal of Computer Graphics Techniques (JCGT) 2
(8 2013), 55-69. Issue 2. http://jcgt.org/published/0002/02/04/

Anish Chandak, Lakulish Antani, Micah Taylor, and Dinesh Manocha. 2009. FastV:
From-point Visibility Culling on Complex Models. In Proc. of the 20th Eurographics
Conference on Rendering (EGSR’09). Eurographics Association, 1237-1246. https:
//doi.org/10.1111/j.1467-8659.2009.01501.x

C. Chandrasekaran, D. McNabb, D. Kuah, M. Fauconneau, and F. Giesen. 2016. Software
Occlusion Culling. Published online, last visited 2019-01-15.. https://software.intel.
com/en-us/articles/software-occlusion-culling

D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva, and F. Durand. 2003. A survey of visibility
for walkthrough applications. IEEE Transactions on Visualization and Computer
Graphics 9, 3 (7 2003), 412-431. https://doi.org/10.1109/TVCG.2003.1207447

Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. 1998. Conservative
Visibility and Strong Occlusion for Viewspace Partitioning of Densely Occluded
Scenes. Computer Graphics Forum 17, 3 (1998), 243-253. https://doi.org/10.1111/1467-
8659.00271

D. Collin. 2011. Culling the Battlefield. Talk at Game Developer’s Conference.

WLT. Correa, J.T. Klosowski, and C.T. Silva. 2003. Visibility-based prefetching for
interactive out-of-core rendering. In IEEE Sensors Journal. IEEE, 1-8. https://doi.
org/10.1109/PVGS.2003.1249035

Xavier Décoret, Gilles Debunne, and Francois Sillion. 2003. Erosion Based Visibility
Preprocessing. In Proc. of the 14th Eurographics Workshop on Rendering (EGRW "03).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 281-288.

Mark Duchaineau, Murray Wolinsky, David E Sigeti, Mark C Miller, Charles Aldrich, and
Mark B Mineev-Weinstein. 1997. ROAMing Terrain: Real-time Optimally Adapting
Meshes. In Proceedings of the 8th Conference on Visualization 97 (VIS '97). IEEE
Computer Society Press, Los Alamitos, CA, USA, 81-88.

Fredo Durand. 1999. 3D Visibility: analytical study and applications. Ph. D. Dissertation.

Frédo Durand, George Drettakis, Joélle Thollot, and Claude Puech. 2000. Conservative
visibility preprocessing using extended projections. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques - SSGGRAPH ’00. ACM
Press, New York, New York, USA, 239-248. https://doi.org/10.1145/344779.344891

Epic Games. 2022. Precomputed Visibility Volumes. https://docs.unrealengine.com/5.
1/en-US/precomputed-visibility-volumes-in-unreal-engine/ Visited 21/12/2022..

Sebastian Freitag, Benjamin Weyers, and Torsten W. Kuhlen. 2017. Efficient approximate
computation of scene visibility based on navigation meshes and applications for
navigation and scene analysis. In 2017 IEEE Symposium on 3D User Interfaces (3DUI).
IEEE, 134-143. https://doi.org/10.1109/3DUL2017.7893330

Ned Greene. 1995. Hierarchical Rendering of Complex Environments. Ph. D. Dissertation.

Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility.
In Proceedings of the 20th annual conference on Computer graphics and interactive
techniques - SIGGRAPH °93. ACM Press, New York, New York, USA, 231-238. https:
//doi.org/10.1145/166117.166147

Ulrich Haar and Sebastian Aaltonen. 2015. GPU-Driven Rendering Pipelines. SIG-
GRAPH Course: Advances in Real-Time Rendering in Games.

Jon Hasselgren, Magnus Andersson, and Tomas Akenine-Moéller. 2016. Masked Soft-
ware Occlusion Culling. In Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics. https://doi.org/10.2312/hpg.20161189

Francis S. Hill and Stephen M Kelley. 2006. Computer Graphics Using OpenGL (3rd
Edition). Prentice-Hall, Inc., USA.

Stephen Hill and Daniel Collin. 2011. Practical, Dynamic Visibility for Games. GPU
Pro 2., 329-347 pages.

Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger. 2019a. The Camera Offset
Space: Real-time Potentially Visible Set Computations for Streaming Rendering.
ACM Trans. Graph. 38, 6, Article 231 (Nov. 2019), 14 pages.

15

Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger. 2019b. Tessellated Shading
Streaming. Computer Graphics Forum (2019).

Lichan Hong, Shigeru Muraki, Arie E Kaufman, Dirk Bartz, and Taosong He. 1997.
Virtual voyage: interactive navigation in the human colon. In Proc. of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, {SSIGGRAPH} 1997, Los
Angeles, CA, USA, August 3-8, 1997. 27-34. https://doi.org/10.1145/258734.258750

T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. 1997. Accelerated
occlusion culling using shadow frusta. In Proceedings of the Annual Symposium on
Computational Geometry. ACM, 1-10. https://doi.org/10.1145/262839.262847

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. 2000. Virtual Occluders:

An Efficient Intermediate PVS representation. Springer, Vienna, 59-70. https:
//doi.org/10.1007/978-3-7091-6303-0{ }6
Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. 2001. Hardware-

accelerated from-region visibility using a dual ray space. Springer, Vienna, 205-215.
https://doi.org/10.1007/978-3-7091-6242-2{_}19

Samuli Laine. 2005. A general algorithm for output-sensitive visibility preprocessing.
In Proceedings of the 2005 symposium on Interactive 3D graphics and games - SI3D "05.
ACM Press, New York, New York, USA, 31. https://doi.org/10.1145/1053427.1053433

Sungkil Lee, Younguk Kim, and Elmar Eisemann. 2018. Iterative Depth Warping. ACM
Trans. Graph. 37,5, Article 177 (Oct. 2018), 13 pages. https://doi.org/10.1145/3190859

Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. 2003. Ray space factorization
for from-region visibility. In ACM SIGGRAPH 2003 Papers on - SSGGRAPH "03, Vol. 22.
ACM Press, New York, New York, USA, 595. https://doi.org/10.1145/1201775.882313

Oliver Mattausch, Jiri Bittner, and Michael Wimmer. 2006. Adaptive visibility-driven
view cell construction. Proceedings of the 17th Eurographics conference on Rendering
Techniques (2006), 195-205. https://doi.org/10.2312/egwr/egsr06/195-205

Oliver Mattausch, Jiri Bittner, and Michael Wimmer. 2008. CHC++: Coherent Hierar-
chical Culling Revisited. Computer Graphics Forum 27, 2 (4 2008), 221-230.

Joerg H Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar, Markus
Steinberger, and Dieter Schmalstieg. 2018. Shading Atlas Streaming. ACM Transac-
tions on Graphics 37, 6 (11 2018). https://doi.org/10.1145/3272127.3275087

S. Nirenstein and E. Blake. 2004. Hardware accelerated visibility preprocessing using
adaptive sampling. Proceedings of the Fifteenth Eurographics conference on Rendering
Techniques (2004), 207-216. https://doi.org/10.2312/egwr/egsr04/207-216

E. Persson. 2012. Creating Vast Game Worlds: Experiences from Avalanche Studios.
SIGGRAPH Talks.

Gernot Schaufler, Julie Dorsey, Xavier Decoret, and Frangois X. Sillion. 2000. Conser-
vative volumetric visibility with occluder fusion. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques - SSGGRAPH ’00. ACM
Press, New York, New York, USA, 229-238. https://doi.org/10.1145/344779.344886

Yvens Reboucas Serpa and Maria Andréia Formico Rodrigues. 2019. A draw call-oriented
approach for visibility of static and dynamic scenes with large number of triangles.
Visual Computer 35, 4 (apr 2019), 549-563.

Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Rendering Systems.
ACM Comput. Surv. 47, 4, Article 57 (May 2015).

Jeremy Shopf, Joshua Barczak, Christopher Oat, and Natalya Tatarchuk. 2008. March
of the Froblins: Simulation and rendering massive crowds of intelligent and detailed
creatures on GPU. In ACM SIGGRAPH Courses. 52-101. https://doi.org/10.1145/
1404435.1404439

Seth J. Teller and Carlo H. Séquin. 1991. Visibility preprocessing for interactive walk-
throughs. In Proceedings of the 18th annual conference on Computer graphics and
interactive techniques - SSGGRAPH 91, Vol. 25. ACM Press, New York, New York,
USA, 61-70. https://doi.org/10.1145/122718.122725

N. Thomos, N.V. Boulgouris, and M.G. Strintzis. 2006. Optimized transmission of
JPEG2000 streams over wireless channels. IEEE Transactions on Image Processing 15,
1 (2006), 54-67. https://doi.org/10.1109/TIP.2005.860338

Alex Wilson, Ashley Miller, Martin Matthews, and Shirley Stevens. 2023. 2023 GPU
Benchmark and Graphics Card Comparison Chart. https://www.gpucheck.com/gpu-
benchmark- graphics-card-comparison-chart Visited on January 17, 2023..

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. 2000. Visibility Preprocessing
with Occluder Fusion for Urban Walkthroughs. Springer, Vienna, 71-82. https:
//doi.org/10.1007/978-3-7091-6303-0{_}7

Peter Wonka, Michael Wimmer, and Francois X. Sillion. 2001. Instant Visibility.
Computer Graphics Forum 20, 3 (9 2001), 411-421. https://doi.org/10.1111/1467-
8659.00534

Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina, and
Alexander Reshetov. 2006. Guided visibility sampling. In ACM SIGGRAPH 2006,
Vol. 25. ACM Press, New York, USA, 494. https://doi.org/10.1145/1179352.1141914


https://doi.org/10.1145/91385.91416
https://doi.org/10.1109/CGI.1998.694268
https://doi.org/10.1145/1576246.1531400
https://doi.org/10.1068/b2957
https://doi.org/10.2312/egwr/egsr05/223-230
http://jcgt.org/published/0002/02/04/
https://doi.org/10.1111/j.1467-8659.2009.01501.x
https://doi.org/10.1111/j.1467-8659.2009.01501.x
https://software.intel.com/en-us/articles/software-occlusion-culling
https://software.intel.com/en-us/articles/software-occlusion-culling
https://doi.org/10.1109/TVCG.2003.1207447
https://doi.org/10.1111/1467-8659.00271
https://doi.org/10.1111/1467-8659.00271
https://doi.org/10.1109/PVGS.2003.1249035
https://doi.org/10.1109/PVGS.2003.1249035
https://doi.org/10.1145/344779.344891
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://doi.org/10.1109/3DUI.2017.7893330
https://doi.org/10.1145/166117.166147
https://doi.org/10.1145/166117.166147
https://doi.org/10.2312/hpg.20161189
https://doi.org/10.1145/258734.258750
https://doi.org/10.1145/262839.262847
https://doi.org/10.1007/978-3-7091-6303-0{_}6
https://doi.org/10.1007/978-3-7091-6303-0{_}6
https://doi.org/10.1007/978-3-7091-6242-2{_}19
https://doi.org/10.1145/1053427.1053433
https://doi.org/10.1145/3190859
https://doi.org/10.1145/1201775.882313
https://doi.org/10.2312/egwr/egsr06/195-205
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.2312/egwr/egsr04/207-216
https://doi.org/10.1145/344779.344886
https://doi.org/10.1145/1404435.1404439
https://doi.org/10.1145/1404435.1404439
https://doi.org/10.1145/122718.122725
https://doi.org/10.1109/TIP.2005.860338
https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart
https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart
https://doi.org/10.1007/978-3-7091-6303-0{_}7
https://doi.org/10.1007/978-3-7091-6303-0{_}7
https://doi.org/10.1111/1467-8659.00534
https://doi.org/10.1111/1467-8659.00534
https://doi.org/10.1145/1179352.1141914

	Abstract
	1 Introduction
	2 Background
	2.1 From-point visibility
	2.2 From-region visibility

	3 Trim regions
	3.1 Occlusion intervals
	3.2 Disocclusion
	3.3 Trim regions
	3.4 View frustum adaptation for viewcells
	3.5 Multiple trim regions along one view ray
	3.6 Optimal trimming direction

	4 Visibility culling algorithm
	4.1 Geometry generation
	4.2 Geometry rasterization
	4.3 Occlusion interval resolve
	4.4 PVS gathering

	5 Octree layer peeling
	5.1 Octree generation
	5.2 Layer generation

	6 Results
	6.1 Comparison to state-of-the-art methods
	6.2 Speed
	6.3 PVS size and tightness
	6.4 PVS correctness

	7 Conclusion and future work
	Acknowledgments
	References

