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Fig. 1: Overview of our Bag of Wor(l)d anchors (BOWA) approach for instant large-scale localization in an analogy to the Bag-
of-Words (BOW) approach by Nister and Stewenius [37]. While a single scene is described as a collection of BOWA descriptors 
inferred from geometric primitives, the collectivity of these descriptions for multiple environments is organized in a tree-like 
database structure to maintain high scalability. Given an actual environment captured with a mobile device featuring geometric 
primitive detection, a set of candidate environments from the database is inferred by indexing into the database. A subsequent 
verification step identifies the correct environment, while the result of 6DOF pose estimation can ultimately be used to register the 
device, respectively the user, in a single shared augmented reality space.

Abstract—In this work, we present a novel scene description to perform large-scale localization using only geometric constraints. 
Our work extends compact world anchors with a search data structure to efficiently perform l ocalization and pose estimation of 
mobile augmented reality devices across multiple platforms (e.g., HoloLens 2, iPad). The algorithm uses a bag-of-words approach 
to characterize distinct scenes (e.g., rooms). Since the individual scene representations rely on compact geometric (rather than 
appearance-based) features, the resulting search structure is very lightweight and fast, lending itself to deployment on mobile devices. 
We present a set of experiments demonstrating the accuracy, performance and scalability of our novel localization method. In 
addition, we describe several use cases demonstrating how efficient cross-platform localization facilitates sharing of augmented reality 
experiences.

Index Terms—Camera localization, Correspondence problem, 3D registration, Augmented Reality, Computer vision, Cross-platform, 
Collaborative, Structural modeling

1 INTRODUCTION

Self-localization on mobile devices is a key enabling technology for
augmented reality (AR). Recent commercial AR solutions, such as Ap-
ple’s ARKit, Google’s ARCore, and Microsoft’s Mixed-Reality Toolkit
(MRTK), provide this functionality out of the box. These solutions
build on hardware-accelerated code for simultaneous localization and
mapping (SLAM) to deliver incremental 6DOF pose tracking as well
as a map of the observed environment (a so-called world anchor). The
world anchors can be searched by the SLAM code to re-establish the
pose (in case tracking is lost) or stored for pose detection from scratch
at a later time. Multiple world anchors can be searched for similarities
with the currently observed environment to provide place detection, i.e.,
the identification of the user’s environment (e.g., the current room).

If a unified large-scale reconstruction of the global environment is
available, place detection and pose detection can be combined into a
single operation, global localization. However, previous methods for
global localization are expensive in terms of storage and computation.
For example, the file size of Microsoft Azure world anchors is com-
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monly in the 20-30 MB range, making it expensive to load, store or
transmit these datasets. Besides, world anchors are derived from device-
specific sensing capabilities (e.g., Lidar sensor) and therefore tied to a
specific platform. As a consequence, world anchors cannot be easily
exchanged between mobile devices of different vendors. Instead, cross-
platform global localization services are usually provided as paid cloud
services, which come with significant disadvantages. Apart from ven-
dor lock-in and potential loss of privacy, cloud services require constant
network connectivity and introduce additional latency. This situation
makes the creation of shared applications between heterogeneous AR
devices cumbersome or impossible.

Reyes-Aviles et al. [38] recently introduced the concept of compact
world anchors (CWA), which enable pose detection from pairwise
relationships between geometric entities (planes, cylinders and spheres),
which are detected in SLAM maps. The resulting CWA data structure
is tiny (kilobytes instead of megabytes), and the computations for pose
detection are cheap.

However, CWA has some limitations. First and foremost, it can
only provide pose detection, but not place detection. The right CWA
dataset for the current scene needs to be available ahead of time. It can
possibly distinguish a small number of geometrically unique places, if
multiple CWA datasets are simply concatenated. However, its power to
discriminate places does not scale well. The ability of CWA to work
across multiple platforms and users has not yet been investigated.

In this work, we aim to continue the research direction that started
with CWA. To this end, we introduce a new scene representation
nicknamed bag of wor(l)d anchors (BOWA), which is created from a
novel geometric descriptor with enhanced resilience compared to CWA.
Hence, our novel scene representation inherits the lightweight repre-
sentation of CWA, but allows both pose detection and place detection.
Our core contributions are:

• A robust feature descriptor that lends itself to both pose detection
and place detection

• A scalable data structure for global localization with constant runtime
• An extensive evaluation of the performance of BOWA, both in terms

of correspondences matching success rate, as well as in terms of
cross-platform performance on a sizable indoor environment

• A set of collaborative applications to demonstrate cross-platform,
multi-user applications that would have been hard or impossible to
build before

We present data showing that BOWA can find the correct scene within
a few milliseconds on a mobile or head-worn device, while yielding
centimeter-level accurate pose results.

2 RELATED WORK

Our work combines aspects of broad areas, including SLAM, pose
detection, and scene understanding. We provide a brief survey of the
most important concepts and instances of prior work, while we refer
the reader to surveys [6, 31–33, 40] for more extensive coverage.

2.1 Simultaneous localization and mapping

With sufficient parallel processing power, keyframe SLAM became
feasible [23], ushering in a wave of real-time SLAM methods. Among
them, volumetric integration [21, 35] based on depth sensors may have
been the next leap ahead. Although many extensions have been pro-
posed, those approaches are still considered the state of the art for
non-semantic SLAM.

Leading commercial solutions for AR, such as ARKit, ARCore
and MRTK, feature hardware-supported SLAM systems (i.e., using
custom sensors and processors), which are also capable of storing their
maps as world anchors, in a proprietary, binary format. Microsoft
calls them Azure Anchors, Google, ARCore Cloud Anchors [3], and
Apple, ARWorldMap [1]. The former two methods can be shared across
devices and vendors by means of a cloud service, while Apple’s format
is confined to stay within its ecosystem. The size of the anchors and the
need to invoke a paid cloud service make it impractical to quickly share
anchors between mobile devices. Likewise, curating collections of
world anchors to cover large areas is tedious. Yet another impediment
for AR developers stems from the fact that anchors are created by
automatically scanning the user’s environment and cannot be restricted
to contain only certain objects, such as offered by third-party tracking
tools, like Vuforia’s area targets [4].

2.2 Pose detection

Standalone (non-incremental) pose detection is a key ingredient of both
conventional model-based pose tracking and of SLAM systems. As-
suming a model of an object or place, an initial pose must be identified
from a single image [22,41], or the pose must be re-established instantly
after a tracking failure [18, 47]. Such pose detection is typically done
by establishing 2D-3D relationships between the interest points in the
image and known features of the model, or by index data structures,
such as Ferns [18], derived from the features. Spurious matches are
eliminated with probabilistic sampling methods, such as RANSAC [15].
For optimal performance, both features and index structures are usu-
ally hand-crafted and closely tied to the sensing hardware, making it
difficult to achieve cross-platform operation. In either case, traditional
pose detection methods operate on a small model and may require a
reasonable pose guess as a starting point. Technically, CWA [38] is also
a pose detection method, as it operates on a small model of no more
than a few world anchors and does not offer any place detection ability.

2.3 Localization using bag of words
Conventional pose detection based on linear search through a feature
set does not scale well to address the needs of global localization. Apart
from the obvious challenges in searching through a growing database
in constant time, individual features are not discriminative enough to
distinguish both place and pose at the same time. Therefore, Nister
and Stewenius [37] proposed the bag of words (BOW) approach, which
– in a nutshell – considers how rare an observed feature is as a way
to distinguish places. This idea can be implemented with a so-called
vocabulary tree, which groups similar features for quick searching.

This idea became very popular in the following years. Agarwal
et al. [7] used vocabulary trees to create reconstructions of sights in
different cities from publicly available image collections. Irschara
et al. [20] focused on the task of localization from 3D reconstructions,
partitioning reconstructions based on virtual views. Arth et al. proposed
a BOW approach for real-time localization on mobile devices [9, 10].
Widespread toolkits like ORB-SLAM2 [34] continue to rely on the
BOW approach, although research today focuses more on deep learning
methods. In this paper, we show how the BOW approach can boost the
scalability of geometric feature detection.

2.4 Deep-learning-based localization
Recently, many deep-learning methods focusing on visual place recog-
nition have been proposed [8, 17, 30, 45]. The key to solving the visual
place recognition problem is an efficient image retrieval (i.e., finding
the most similar image in the database). However, at the core of these
methods reside convolutional neural network (CNN) architectures for
feature extraction from RGB images, dense descriptors creation and
matching. Other approaches leverage dense 3D point clouds [14,24,48]
to tackle the localization problem in unstructured, dynamic environ-
ments, where local features are not discriminative enough and global
scene descriptors only provide coarse information. These approaches
bring great advancement to the computer vision community; however,
most (if not all) of them are not applicable reasonably on mobile hard-
ware (e.g., iPad Pro, HoloLens 2, Magic Leap 2) at the moment of
writing this paper. Besides, contrary to the dense descriptors these
approaches utilize, our proposed place recognition method leverages
geometric primitives, from which we can compute low-dimensional
descriptors only.

2.5 Semantic SLAM and scene understanding
Semantic SLAM methods build maps from higher-level primitives than
visual point features. One of the first attempts was SLAM++ [39],
which incorporates semantic information per object using polygonal
models. Follow-up approaches, including QuadricSLAM [36] and
others [12, 25, 26, 49], use more specific, complex object instances
rather than generic shapes. Later work includes deep learning as well,
such as DROID-SLAM [46]. In general, these methods aim to increase
the efficiency of map search by composing maps of objects with a
higher level of abstraction than point features, but they do not attempt
to organize large maps for optimal search and detection, which is the
goal of this work.

While there are a lot of deep-learning approaches targeting pixel-
wise semantic segmentation (e.g., identifying an object class per pixel),
there is relatively little work on real-time primitive detection. Recent
work includes the approach of Sommer et al. [43] and an AR related
approach of Stanescu et al. [44]. Another similar objective is pursued
by offline reconstruction methods aiming to estimate room layouts.
Among these approaches, Cabral and Furukawa were the first to de-
scribe a system for reconstruction of piece-wise planar floor plans from
images [11]. More recently, deep learning has been applied to the
problems, including LayoutNet [50], PlaneNet [29] and subsequently
PlaneRCNN [28]. In the latter work, geometric properties of a scene
are inferred by processing single RGB images. Overall, extracting geo-
metric information is a very vivid topic in computer vision. However,
none of these methods is concerned with detection problems.

Commercial solutions (ARKit, ARCore and Microsoft’s Scene Un-
derstanding SDK) also include the ability to detect horizontal and
vertical planes. Empirically, horizontal planes tend to work much more
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Fig. 1: Overview of our Bag of Wor(l)d anchors (BOWA) approach for instant large-scale localization in an analogy to the Bag-
of-Words (BOW) approach by Nister and Stewenius [37]. While a single scene is described as a collection of BOWA descriptors 
inferred from geometric primitives, the collectivity of these descriptions for multiple environments is organized in a tree-like 
database structure to maintain high scalability. Given an actual environment captured with a mobile device featuring geometric 
primitive detection, a set of candidate environments from the database is inferred by indexing into the database. A subsequent 
verification step identifies the correct environment, while the result of 6DOF pose estimation can ultimately be used to register the 
device, respectively the user, in a single shared augmented reality space.

Abstract—In this work, we present a novel scene description to perform large-scale localization using only geometric constraints. 
Our work extends compact world anchors with a search data structure to efficiently perform l ocalization and pose estimation of 
mobile augmented reality devices across multiple platforms (e.g., HoloLens 2, iPad). The algorithm uses a bag-of-words approach 
to characterize distinct scenes (e.g., rooms). Since the individual scene representations rely on compact geometric (rather than 
appearance-based) features, the resulting search structure is very lightweight and fast, lending itself to deployment on mobile devices. 
We present a set of experiments demonstrating the accuracy, performance and scalability of our novel localization method. In 
addition, we describe several use cases demonstrating how efficient cross-platform localization facilitates sharing of augmented reality 
experiences.

Index Terms—Camera localization, Correspondence problem, 3D registration, Augmented Reality, Computer vision, Cross-platform, 
Collaborative, Structural modeling

1 INTRODUCTION

Self-localization on mobile devices is a key enabling technology for
augmented reality (AR). Recent commercial AR solutions, such as Ap-
ple’s ARKit, Google’s ARCore, and Microsoft’s Mixed-Reality Toolkit
(MRTK), provide this functionality out of the box. These solutions
build on hardware-accelerated code for simultaneous localization and
mapping (SLAM) to deliver incremental 6DOF pose tracking as well
as a map of the observed environment (a so-called world anchor). The
world anchors can be searched by the SLAM code to re-establish the
pose (in case tracking is lost) or stored for pose detection from scratch
at a later time. Multiple world anchors can be searched for similarities
with the currently observed environment to provide place detection, i.e.,
the identification of the user’s environment (e.g., the current room).

If a unified large-scale reconstruction of the global environment is
available, place detection and pose detection can be combined into a
single operation, global localization. However, previous methods for
global localization are expensive in terms of storage and computation.
For example, the file size of Microsoft Azure world anchors is com-
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monly in the 20-30 MB range, making it expensive to load, store or
transmit these datasets. Besides, world anchors are derived from device-
specific sensing capabilities (e.g., Lidar sensor) and therefore tied to a
specific platform. As a consequence, world anchors cannot be easily
exchanged between mobile devices of different vendors. Instead, cross-
platform global localization services are usually provided as paid cloud
services, which come with significant disadvantages. Apart from ven-
dor lock-in and potential loss of privacy, cloud services require constant
network connectivity and introduce additional latency. This situation
makes the creation of shared applications between heterogeneous AR
devices cumbersome or impossible.

Reyes-Aviles et al. [38] recently introduced the concept of compact
world anchors (CWA), which enable pose detection from pairwise
relationships between geometric entities (planes, cylinders and spheres),
which are detected in SLAM maps. The resulting CWA data structure
is tiny (kilobytes instead of megabytes), and the computations for pose
detection are cheap.

However, CWA has some limitations. First and foremost, it can
only provide pose detection, but not place detection. The right CWA
dataset for the current scene needs to be available ahead of time. It can
possibly distinguish a small number of geometrically unique places, if
multiple CWA datasets are simply concatenated. However, its power to
discriminate places does not scale well. The ability of CWA to work
across multiple platforms and users has not yet been investigated.

In this work, we aim to continue the research direction that started
with CWA. To this end, we introduce a new scene representation
nicknamed bag of wor(l)d anchors (BOWA), which is created from a
novel geometric descriptor with enhanced resilience compared to CWA.
Hence, our novel scene representation inherits the lightweight repre-
sentation of CWA, but allows both pose detection and place detection.
Our core contributions are:

• A robust feature descriptor that lends itself to both pose detection
and place detection

• A scalable data structure for global localization with constant runtime
• An extensive evaluation of the performance of BOWA, both in terms

of correspondences matching success rate, as well as in terms of
cross-platform performance on a sizable indoor environment

• A set of collaborative applications to demonstrate cross-platform,
multi-user applications that would have been hard or impossible to
build before

We present data showing that BOWA can find the correct scene within
a few milliseconds on a mobile or head-worn device, while yielding
centimeter-level accurate pose results.

2 RELATED WORK

Our work combines aspects of broad areas, including SLAM, pose
detection, and scene understanding. We provide a brief survey of the
most important concepts and instances of prior work, while we refer
the reader to surveys [6, 31–33, 40] for more extensive coverage.

2.1 Simultaneous localization and mapping

With sufficient parallel processing power, keyframe SLAM became
feasible [23], ushering in a wave of real-time SLAM methods. Among
them, volumetric integration [21, 35] based on depth sensors may have
been the next leap ahead. Although many extensions have been pro-
posed, those approaches are still considered the state of the art for
non-semantic SLAM.

Leading commercial solutions for AR, such as ARKit, ARCore
and MRTK, feature hardware-supported SLAM systems (i.e., using
custom sensors and processors), which are also capable of storing their
maps as world anchors, in a proprietary, binary format. Microsoft
calls them Azure Anchors, Google, ARCore Cloud Anchors [3], and
Apple, ARWorldMap [1]. The former two methods can be shared across
devices and vendors by means of a cloud service, while Apple’s format
is confined to stay within its ecosystem. The size of the anchors and the
need to invoke a paid cloud service make it impractical to quickly share
anchors between mobile devices. Likewise, curating collections of
world anchors to cover large areas is tedious. Yet another impediment
for AR developers stems from the fact that anchors are created by
automatically scanning the user’s environment and cannot be restricted
to contain only certain objects, such as offered by third-party tracking
tools, like Vuforia’s area targets [4].

2.2 Pose detection

Standalone (non-incremental) pose detection is a key ingredient of both
conventional model-based pose tracking and of SLAM systems. As-
suming a model of an object or place, an initial pose must be identified
from a single image [22,41], or the pose must be re-established instantly
after a tracking failure [18, 47]. Such pose detection is typically done
by establishing 2D-3D relationships between the interest points in the
image and known features of the model, or by index data structures,
such as Ferns [18], derived from the features. Spurious matches are
eliminated with probabilistic sampling methods, such as RANSAC [15].
For optimal performance, both features and index structures are usu-
ally hand-crafted and closely tied to the sensing hardware, making it
difficult to achieve cross-platform operation. In either case, traditional
pose detection methods operate on a small model and may require a
reasonable pose guess as a starting point. Technically, CWA [38] is also
a pose detection method, as it operates on a small model of no more
than a few world anchors and does not offer any place detection ability.

2.3 Localization using bag of words
Conventional pose detection based on linear search through a feature
set does not scale well to address the needs of global localization. Apart
from the obvious challenges in searching through a growing database
in constant time, individual features are not discriminative enough to
distinguish both place and pose at the same time. Therefore, Nister
and Stewenius [37] proposed the bag of words (BOW) approach, which
– in a nutshell – considers how rare an observed feature is as a way
to distinguish places. This idea can be implemented with a so-called
vocabulary tree, which groups similar features for quick searching.

This idea became very popular in the following years. Agarwal
et al. [7] used vocabulary trees to create reconstructions of sights in
different cities from publicly available image collections. Irschara
et al. [20] focused on the task of localization from 3D reconstructions,
partitioning reconstructions based on virtual views. Arth et al. proposed
a BOW approach for real-time localization on mobile devices [9, 10].
Widespread toolkits like ORB-SLAM2 [34] continue to rely on the
BOW approach, although research today focuses more on deep learning
methods. In this paper, we show how the BOW approach can boost the
scalability of geometric feature detection.

2.4 Deep-learning-based localization
Recently, many deep-learning methods focusing on visual place recog-
nition have been proposed [8, 17, 30, 45]. The key to solving the visual
place recognition problem is an efficient image retrieval (i.e., finding
the most similar image in the database). However, at the core of these
methods reside convolutional neural network (CNN) architectures for
feature extraction from RGB images, dense descriptors creation and
matching. Other approaches leverage dense 3D point clouds [14,24,48]
to tackle the localization problem in unstructured, dynamic environ-
ments, where local features are not discriminative enough and global
scene descriptors only provide coarse information. These approaches
bring great advancement to the computer vision community; however,
most (if not all) of them are not applicable reasonably on mobile hard-
ware (e.g., iPad Pro, HoloLens 2, Magic Leap 2) at the moment of
writing this paper. Besides, contrary to the dense descriptors these
approaches utilize, our proposed place recognition method leverages
geometric primitives, from which we can compute low-dimensional
descriptors only.

2.5 Semantic SLAM and scene understanding
Semantic SLAM methods build maps from higher-level primitives than
visual point features. One of the first attempts was SLAM++ [39],
which incorporates semantic information per object using polygonal
models. Follow-up approaches, including QuadricSLAM [36] and
others [12, 25, 26, 49], use more specific, complex object instances
rather than generic shapes. Later work includes deep learning as well,
such as DROID-SLAM [46]. In general, these methods aim to increase
the efficiency of map search by composing maps of objects with a
higher level of abstraction than point features, but they do not attempt
to organize large maps for optimal search and detection, which is the
goal of this work.

While there are a lot of deep-learning approaches targeting pixel-
wise semantic segmentation (e.g., identifying an object class per pixel),
there is relatively little work on real-time primitive detection. Recent
work includes the approach of Sommer et al. [43] and an AR related
approach of Stanescu et al. [44]. Another similar objective is pursued
by offline reconstruction methods aiming to estimate room layouts.
Among these approaches, Cabral and Furukawa were the first to de-
scribe a system for reconstruction of piece-wise planar floor plans from
images [11]. More recently, deep learning has been applied to the
problems, including LayoutNet [50], PlaneNet [29] and subsequently
PlaneRCNN [28]. In the latter work, geometric properties of a scene
are inferred by processing single RGB images. Overall, extracting geo-
metric information is a very vivid topic in computer vision. However,
none of these methods is concerned with detection problems.

Commercial solutions (ARKit, ARCore and Microsoft’s Scene Un-
derstanding SDK) also include the ability to detect horizontal and
vertical planes. Empirically, horizontal planes tend to work much more
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iPad Pro 3.Gen, A2377 HoloLens 2 Samsung S20 Ultra

(a) (b) (c)
Fig. 2: Comparison of plane detection results on a real scene for (a) ARKit, (b) Scene Understanding SDK and (c) ARCore. Observing, for
example, the table on the right of the pictures, the plane detection results are quite accurate owing to the depth perception capabilities of the
devices for (a) and (b), while the results using imagery only (c) are useless for our approach.

reliable than vertical ones. None of the toolkits offers the detection of
geometric primitives other than planes, like cylinders or spheres. To
the best of our knowledge, the iPad Pro and HoloLens 2, make use of
depth cameras for plane estimation, while the capabilities of Android’s
ARCore are very limited, even on high-end devices (e.g., Samsung S20
Ultra with depth camera). Unfortunately, this makes ARCore devices
almost useless for our goals. See Figure 2 for a comparison between
different device classes. However, we consider this a temporary disad-
vantage, and we demonstrate cross-platform operation of BOWA for
the remaining platforms.

3 SCENE DESCRIPTION

The original CWA approach was only tested on small models obtained
using either (a) InfiniTAMv3 and structural modeling [44] or (b) ARKit,
and using exhaustive correspondence search between the scanned scene
primitives and a stored world anchor. At the core of CWA resides a
3-vector descriptor

FCWA(p1,p2) = (∠(n1,d), ∠(n2,d), ∠(n1,n2)) . (1)

This approach delivers very compact, purely geometric descriptor sets,
but has several limitations: First, the reference world anchors (and thus
the identity of the current place) must be known ahead of time. Second,
the environment must be small enough so that a naive search is accept-
able. The distinctive power of a 3-vector may be insufficient in the
presence of similar, repetitive or partially observed plane configurations
present in a larger environment. Establishing false correspondences
may lead to incorrect results. In addition, exhaustive search may be
too slow for larger environments. Third, pose detection has so far
been demonstrated only within a single platform. The planar structures
provided by an underlying framework (e.g., Scene Understanding SDK,
ARKit, or ARCore) are similar, but not identical, potentially leading to
problems during matching.

3.1 Distinctive feature descriptor
To overcome these limitations, we introduce a novel 14-dimensional
descriptor vector (FBOWA), and we combine multiple such descriptors
into a world anchor using a BOW-like approach1.

FBOWA includes not only angle differences between the normals
of pairs of oriented points (see Figure 3a), but also the sizes and the
relative orientation and position between pairs of planes (see Figure 3b).
We only considered planes for the development of this new descriptor
due to the fact that no commercial SLAM solution provides detection
of cylinders, spheres, etc. At the time of writing this paper, Microsoft’s
Scene Understanding SDK, ARKit and ARCore only provide planar
surface detection. However, this does not limit our approach in any
way, as we will discuss at the end of this work.

To estimate the first four features of our descriptor, we use the point
pair feature (PPF) concept introduced by Drost et al. [13]. From two
given planes m1 and m2 with surface normals n1 and n2, we compute
the geometric centroids p1 and p2 of their point sets (see Figure 3a).

1Technically, our method should therefore be called “Bag of Words As World
Anchors”, but we did not like the acronym BOWAWA.

These features describe the angular differences between the normals
(n1 and n2) of the oriented points (p1 and p2) and the length of the
vector d between them,

Fpp f s = (∥d∥2,∠(n1,d), ∠(n2,d), ∠(n1,n2)) , (2)

where d = p2 −p1, and ∠(a,b) ∈ [0,π] denotes the angle between two
vectors. The next four features encode the size of the pair of primitives,

Fsizes = (A2,A1,R2,R1) , (3)

where A1 and A2 denote the surface area of planes m1 and m2 respec-
tively, and R1 and R2 denote the aspect ratio computed as

R =
max(L)
min(L)

, (4)

where L is a vector that contains the edge lengths of the minimum
bounding rectangle around all observed points of a given plane. The
last six features of our descriptor encode the relative orientation and
position between pairs of primitives,

Fpose =
(
Qw,Qx,Qy,Qz, tx, tz

)
, (5)

where Q is a quaternion which denotes the relative rotation from one
plane to another, and t is the relative position from one plane to another.
For example, in Figure 3b, we set p1 to be the origin of a local coordi-
nate system which contains planes m1 and m2. We align the normal n1
with the z axis and rotate the point p2 about the z axis to let it lie on the
xz plane. We denote the 3D points after the transformation as follows:

p1 = [0,0,0 ]⊤ , Π⊤
xz p2 = 0 ∴ p2 = [ x,0,z ]⊤ . (6)

We write the equation of the plane m1 and the normal n1 after the
transformation as follows:

z = 0 : m1, n1 · z = 1 ∴ n1 = [0,0,z ]⊤ . (7)

Finally, our descriptor for two planes m1 and m2 is

FBOWA(m1,m2) =
(
Fpp f s,Fsizes,Fpose

)
, (8)

3.2 Descriptor validation
FBOWA descriptors are computed using pairs of primitives. Because
not every combination of two primitives yields a meaningful descriptor,
we established some rules based on the geometric properties of the fea-
tures and the observations made during the evaluation of the proposed
approach on real-world scenarios.

The first four features (see Equation 2) are computed from pairs of
oriented points (see Figure 3a). We extract such points by calculating
the geometric centroids of planes, i.e., by computing the average of the
3D points which define the minimum bounding rectangle of a plane.

Parallel or co-planar planes cannot be used, because the three angles
∠(n1,d), ∠(n2,d), and ∠(n1,n2) of Equation 2 would be equal. Other
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Fig. 3: Geometric features extracted from pairs of primitives to create
FBOWA descriptors. (a) Example of the four features used to create
Fpp f s in Equation 2. (b) Example of the local coordinate system used
to create the Fpose features in Equation 5.

problematic cases are planes with very large surface area that must be
fully observable, which is only possible in a very small fraction of
the localization attempts. Therefore, we do not compute descriptors
from parallel or co-planar planes, planes with areas A > 7 m2. We also
discard planes with a high aspect ratio R > 8, which are usually the
product of partial observations or occlusions. These thresholds were
empirically determined during our evaluations on real-world scenarios.

4 SCENE RECOGNITION

Having to know the world anchor corresponding to the current place
ahead of time is a major bottleneck for practical applications. We
introduce a fast search structure to automatically identify the right
BOWA out of a larger number of possibilities. To this aim, we employ
a vocabulary tree similar to the work of Nister and Stewenius [37] to
solve this problem. In doing so, we simultaneously solve place and
pose detection, while retaining the superior efficiency of geometric
feature descriptors.

4.1 Vocabulary tree creation
In a classical BOW approach, a search tree is created from a large
number of descriptors by repeatedly splitting them according to an
arbitrary dimension of the feature vector. The SIFT features used in
the work of Nister and Stewenius [37] have 128 dimensions, but all
dimensions are uniform values defined over the same domain. A tree is
built using SIFT descriptors extracted from existing image databases
containing millions of images.

In contrast, the dimensionality of 14 used in FBOWA is relatively
low. Alas, creating a tree for FBOWA is not trivial, since we cannot take
advantage of existing databases. Collecting a large enough dataset of
planar descriptions of real scenes (we expect it would have to contain
thousands of scenes) is impossible time-wise. Therefore, we build
our vocabulary tree from FBOWA descriptors extracted from synthetic,
random scene models. As shown in Figure 4, our scene creation en-
gine builds room-sized models with an arbitrary number of box-like
structures, somewhat akin to messy storage spaces. Using a larger
number of these models, we can extract a sufficient number of FBOWA
descriptors to build a vocabulary tree with a suitable parameter set for
the branching factor and the tree depth.

A potential drawback of an approach relying on synthetic exemplars
is that we cannot guarantee that the feature space, respectively, the
leaves of the resulting vocabulary tree, cover the descriptor space well.
However, we can at least ensure that the numbers used to build the tree
are in a plausible range. For example, using 2,500 synthetic models
with each model having between 20 and 50 planes and between 200
and 2,000 FBOWA descriptors, we can build a vocabulary tree, with six
levels and a branch factor of ten; with a good retrieval performance.

4.2 Database training and online recognition
The training of the vocabulary tree is essentially an indexing task.
Given a BOWA set, i.e., N sets of FBOWA descriptors for N rooms, the
vocabulary is trained by traversing each descriptor of each BOWA in-
stance through the tree and recording the weighted paths the descriptors
followed inside the tree. In other words, for each j-th BOWA instance

in the database, we compute a database vector d j
i defined as

d j
i = m j

i ωi, i = 1, ...,
kL+1 − k

k−1
, 1 ≤ j ≤ N, (9)

where k defines the branch factor (number of children of each node i)
of the tree, L refers to the number of levels of the tree, m j

i denotes the
number of descriptors of the given j-th BOWA instance with a path
through node i, with the weights ωi defined as

ωi = ln
N
Ni

, (10)

where N is the number of BOWA instances in the database and Ni is the
number of BOWA instances in the database with at least one descriptor
vector path through node i. We also create a descriptor-to-leaf index by
storing the leaves where the FBOWA descriptors fall into. We use such
an index to later identify scene-to-model correspondences between a
single BOWA and our query scene (see Figure 5). After the vocabulary
tree is created, we build an inverted index [42]. Such an index associates
a given BOWA instance with as many leaf nodes as FBOWA descriptors
it contains. This index is used during the online recognition phase for
efficient hierarchical scoring. It allows us to find all BOWA instances,
in the database, in which a query FBOWA descriptor occurs.

Likewise, in the training step, during the online phase we obtain the
weighted paths followed inside the tree, i.e., the vector

qi = niωi, (11)

where ni is the number of FBOWA descriptors of the query scene with a
path through node i. Since a vocabulary tree is an approximate search
structure, the general performance of a BOW approach is measured by
considering a successful recognition, if the query scene is within the
P most dominant results returned. We use the normalized query and
database vectors,

q =
qi

∥qi∥
, d j =

d j
i

∥d j
i ∥

, 1 ≤ j ≤ N, (12)

to compute a relevance score s using an Lp-norm as

s j(q,d j) = ∥q−d j∥p
p = 2+∑

i

(
|qi −d j

i |
p
−|qi|p −|d j

i |
p)

. (13)

Note that the lower the score s, the higher the relevance. To score
efficiently we only compute the score s for those BOWA instances in
which a query FBOWA occurs. To find those BOWA instances we use
the inverted index that we compute during the offline phase. We thus
retrieve a list of relevance from which we can identify those P most
promising BOWA instances.

4.3 Pose estimation and verification
From our sorted list, we now verify each BOWA in ascending order of
score s, i.e., descending order of relevance. In analogy to the calculation
of a homography on image queries to identify the right candidate, we
use a pose estimation check to validate the BOWA candidate in question
(see Figure 5).

First, we obtain a list of potential correspondences by determining
the descriptors from the BOWA candidate and the current query scene,
which fall into the same leaves, through a simple intersection, i.e.,
Mi(m,m′) and S j(s,s′). Second, we measure the similarity δi between
all these descriptor pairs as

δ1 =|∥dm∥2 −∥ds∥2|, δ2 = ∥αm −αs∥2, (14)

δ3 =
|A2m −A2s |

max(A2m ,A2s)
, δ4 =

|A1m −A1s |
max(A1m ,A1s)

,

δ5 =
|R2m −R2s |

max(R2m ,R2s)
, δ6 =

|R1m −R1s |
max(R1m ,R1s)

,

δ7 =|⟨Qm,Qs⟩|, δ8 = ∥tm − ts∥2,



4733REyESAVILES ET AL.: BAG Of WORLD ANCHORS fOR INSTANT LARGE-SCALE LOCALIZATION

iPad Pro 3.Gen, A2377 HoloLens 2 Samsung S20 Ultra

(a) (b) (c)
Fig. 2: Comparison of plane detection results on a real scene for (a) ARKit, (b) Scene Understanding SDK and (c) ARCore. Observing, for
example, the table on the right of the pictures, the plane detection results are quite accurate owing to the depth perception capabilities of the
devices for (a) and (b), while the results using imagery only (c) are useless for our approach.

reliable than vertical ones. None of the toolkits offers the detection of
geometric primitives other than planes, like cylinders or spheres. To
the best of our knowledge, the iPad Pro and HoloLens 2, make use of
depth cameras for plane estimation, while the capabilities of Android’s
ARCore are very limited, even on high-end devices (e.g., Samsung S20
Ultra with depth camera). Unfortunately, this makes ARCore devices
almost useless for our goals. See Figure 2 for a comparison between
different device classes. However, we consider this a temporary disad-
vantage, and we demonstrate cross-platform operation of BOWA for
the remaining platforms.

3 SCENE DESCRIPTION

The original CWA approach was only tested on small models obtained
using either (a) InfiniTAMv3 and structural modeling [44] or (b) ARKit,
and using exhaustive correspondence search between the scanned scene
primitives and a stored world anchor. At the core of CWA resides a
3-vector descriptor

FCWA(p1,p2) = (∠(n1,d), ∠(n2,d), ∠(n1,n2)) . (1)

This approach delivers very compact, purely geometric descriptor sets,
but has several limitations: First, the reference world anchors (and thus
the identity of the current place) must be known ahead of time. Second,
the environment must be small enough so that a naive search is accept-
able. The distinctive power of a 3-vector may be insufficient in the
presence of similar, repetitive or partially observed plane configurations
present in a larger environment. Establishing false correspondences
may lead to incorrect results. In addition, exhaustive search may be
too slow for larger environments. Third, pose detection has so far
been demonstrated only within a single platform. The planar structures
provided by an underlying framework (e.g., Scene Understanding SDK,
ARKit, or ARCore) are similar, but not identical, potentially leading to
problems during matching.

3.1 Distinctive feature descriptor
To overcome these limitations, we introduce a novel 14-dimensional
descriptor vector (FBOWA), and we combine multiple such descriptors
into a world anchor using a BOW-like approach1.

FBOWA includes not only angle differences between the normals
of pairs of oriented points (see Figure 3a), but also the sizes and the
relative orientation and position between pairs of planes (see Figure 3b).
We only considered planes for the development of this new descriptor
due to the fact that no commercial SLAM solution provides detection
of cylinders, spheres, etc. At the time of writing this paper, Microsoft’s
Scene Understanding SDK, ARKit and ARCore only provide planar
surface detection. However, this does not limit our approach in any
way, as we will discuss at the end of this work.

To estimate the first four features of our descriptor, we use the point
pair feature (PPF) concept introduced by Drost et al. [13]. From two
given planes m1 and m2 with surface normals n1 and n2, we compute
the geometric centroids p1 and p2 of their point sets (see Figure 3a).

1Technically, our method should therefore be called “Bag of Words As World
Anchors”, but we did not like the acronym BOWAWA.

These features describe the angular differences between the normals
(n1 and n2) of the oriented points (p1 and p2) and the length of the
vector d between them,

Fpp f s = (∥d∥2,∠(n1,d), ∠(n2,d), ∠(n1,n2)) , (2)

where d = p2 −p1, and ∠(a,b) ∈ [0,π] denotes the angle between two
vectors. The next four features encode the size of the pair of primitives,

Fsizes = (A2,A1,R2,R1) , (3)

where A1 and A2 denote the surface area of planes m1 and m2 respec-
tively, and R1 and R2 denote the aspect ratio computed as

R =
max(L)
min(L)

, (4)

where L is a vector that contains the edge lengths of the minimum
bounding rectangle around all observed points of a given plane. The
last six features of our descriptor encode the relative orientation and
position between pairs of primitives,

Fpose =
(
Qw,Qx,Qy,Qz, tx, tz

)
, (5)

where Q is a quaternion which denotes the relative rotation from one
plane to another, and t is the relative position from one plane to another.
For example, in Figure 3b, we set p1 to be the origin of a local coordi-
nate system which contains planes m1 and m2. We align the normal n1
with the z axis and rotate the point p2 about the z axis to let it lie on the
xz plane. We denote the 3D points after the transformation as follows:

p1 = [0,0,0 ]⊤ , Π⊤
xz p2 = 0 ∴ p2 = [ x,0,z ]⊤ . (6)

We write the equation of the plane m1 and the normal n1 after the
transformation as follows:

z = 0 : m1, n1 · z = 1 ∴ n1 = [0,0,z ]⊤ . (7)

Finally, our descriptor for two planes m1 and m2 is

FBOWA(m1,m2) =
(
Fpp f s,Fsizes,Fpose

)
, (8)

3.2 Descriptor validation
FBOWA descriptors are computed using pairs of primitives. Because
not every combination of two primitives yields a meaningful descriptor,
we established some rules based on the geometric properties of the fea-
tures and the observations made during the evaluation of the proposed
approach on real-world scenarios.

The first four features (see Equation 2) are computed from pairs of
oriented points (see Figure 3a). We extract such points by calculating
the geometric centroids of planes, i.e., by computing the average of the
3D points which define the minimum bounding rectangle of a plane.

Parallel or co-planar planes cannot be used, because the three angles
∠(n1,d), ∠(n2,d), and ∠(n1,n2) of Equation 2 would be equal. Other
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Fig. 3: Geometric features extracted from pairs of primitives to create
FBOWA descriptors. (a) Example of the four features used to create
Fpp f s in Equation 2. (b) Example of the local coordinate system used
to create the Fpose features in Equation 5.

problematic cases are planes with very large surface area that must be
fully observable, which is only possible in a very small fraction of
the localization attempts. Therefore, we do not compute descriptors
from parallel or co-planar planes, planes with areas A > 7 m2. We also
discard planes with a high aspect ratio R > 8, which are usually the
product of partial observations or occlusions. These thresholds were
empirically determined during our evaluations on real-world scenarios.

4 SCENE RECOGNITION

Having to know the world anchor corresponding to the current place
ahead of time is a major bottleneck for practical applications. We
introduce a fast search structure to automatically identify the right
BOWA out of a larger number of possibilities. To this aim, we employ
a vocabulary tree similar to the work of Nister and Stewenius [37] to
solve this problem. In doing so, we simultaneously solve place and
pose detection, while retaining the superior efficiency of geometric
feature descriptors.

4.1 Vocabulary tree creation
In a classical BOW approach, a search tree is created from a large
number of descriptors by repeatedly splitting them according to an
arbitrary dimension of the feature vector. The SIFT features used in
the work of Nister and Stewenius [37] have 128 dimensions, but all
dimensions are uniform values defined over the same domain. A tree is
built using SIFT descriptors extracted from existing image databases
containing millions of images.

In contrast, the dimensionality of 14 used in FBOWA is relatively
low. Alas, creating a tree for FBOWA is not trivial, since we cannot take
advantage of existing databases. Collecting a large enough dataset of
planar descriptions of real scenes (we expect it would have to contain
thousands of scenes) is impossible time-wise. Therefore, we build
our vocabulary tree from FBOWA descriptors extracted from synthetic,
random scene models. As shown in Figure 4, our scene creation en-
gine builds room-sized models with an arbitrary number of box-like
structures, somewhat akin to messy storage spaces. Using a larger
number of these models, we can extract a sufficient number of FBOWA
descriptors to build a vocabulary tree with a suitable parameter set for
the branching factor and the tree depth.

A potential drawback of an approach relying on synthetic exemplars
is that we cannot guarantee that the feature space, respectively, the
leaves of the resulting vocabulary tree, cover the descriptor space well.
However, we can at least ensure that the numbers used to build the tree
are in a plausible range. For example, using 2,500 synthetic models
with each model having between 20 and 50 planes and between 200
and 2,000 FBOWA descriptors, we can build a vocabulary tree, with six
levels and a branch factor of ten; with a good retrieval performance.

4.2 Database training and online recognition
The training of the vocabulary tree is essentially an indexing task.
Given a BOWA set, i.e., N sets of FBOWA descriptors for N rooms, the
vocabulary is trained by traversing each descriptor of each BOWA in-
stance through the tree and recording the weighted paths the descriptors
followed inside the tree. In other words, for each j-th BOWA instance

in the database, we compute a database vector d j
i defined as

d j
i = m j

i ωi, i = 1, ...,
kL+1 − k

k−1
, 1 ≤ j ≤ N, (9)

where k defines the branch factor (number of children of each node i)
of the tree, L refers to the number of levels of the tree, m j

i denotes the
number of descriptors of the given j-th BOWA instance with a path
through node i, with the weights ωi defined as

ωi = ln
N
Ni

, (10)

where N is the number of BOWA instances in the database and Ni is the
number of BOWA instances in the database with at least one descriptor
vector path through node i. We also create a descriptor-to-leaf index by
storing the leaves where the FBOWA descriptors fall into. We use such
an index to later identify scene-to-model correspondences between a
single BOWA and our query scene (see Figure 5). After the vocabulary
tree is created, we build an inverted index [42]. Such an index associates
a given BOWA instance with as many leaf nodes as FBOWA descriptors
it contains. This index is used during the online recognition phase for
efficient hierarchical scoring. It allows us to find all BOWA instances,
in the database, in which a query FBOWA descriptor occurs.

Likewise, in the training step, during the online phase we obtain the
weighted paths followed inside the tree, i.e., the vector

qi = niωi, (11)

where ni is the number of FBOWA descriptors of the query scene with a
path through node i. Since a vocabulary tree is an approximate search
structure, the general performance of a BOW approach is measured by
considering a successful recognition, if the query scene is within the
P most dominant results returned. We use the normalized query and
database vectors,

q =
qi

∥qi∥
, d j =

d j
i

∥d j
i ∥

, 1 ≤ j ≤ N, (12)

to compute a relevance score s using an Lp-norm as

s j(q,d j) = ∥q−d j∥p
p = 2+∑

i

(
|qi −d j

i |
p
−|qi|p −|d j

i |
p)

. (13)

Note that the lower the score s, the higher the relevance. To score
efficiently we only compute the score s for those BOWA instances in
which a query FBOWA occurs. To find those BOWA instances we use
the inverted index that we compute during the offline phase. We thus
retrieve a list of relevance from which we can identify those P most
promising BOWA instances.

4.3 Pose estimation and verification
From our sorted list, we now verify each BOWA in ascending order of
score s, i.e., descending order of relevance. In analogy to the calculation
of a homography on image queries to identify the right candidate, we
use a pose estimation check to validate the BOWA candidate in question
(see Figure 5).

First, we obtain a list of potential correspondences by determining
the descriptors from the BOWA candidate and the current query scene,
which fall into the same leaves, through a simple intersection, i.e.,
Mi(m,m′) and S j(s,s′). Second, we measure the similarity δi between
all these descriptor pairs as

δ1 =|∥dm∥2 −∥ds∥2|, δ2 = ∥αm −αs∥2, (14)

δ3 =
|A2m −A2s |

max(A2m ,A2s)
, δ4 =

|A1m −A1s |
max(A1m ,A1s)

,

δ5 =
|R2m −R2s |

max(R2m ,R2s)
, δ6 =

|R1m −R1s |
max(R1m ,R1s)

,

δ7 =|⟨Qm,Qs⟩|, δ8 = ∥tm − ts∥2,
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Fig. 4: Example of synthetic models used to build our vocabulary tree
for scene recognition. Comparing (a) and (b), the number of primitives
in (b) is apparently higher, subject to a larger set of FBOWA descriptors.

where α = (∠(n1,d), ∠(n2,d), ∠(n1,n2)), Q =
(
Qw,Qx,Qy,Qz

)
,

t = (tx, tz). We further consider only the primitives correspondences
s ↔ m and s′ ↔ m′ when all δi are below a minimum value. This
step is particularly important, as our vocabulary tree is created with a
synthetic set of models. Therefore, also FBOWA descriptors which do
not give correct correspondences may fall into the same leaves.

We use eight different measurements, because the 14 features are
defined over different domains. The length of the vector d is measured
in meters, while the angles α ∈ [0,π] are measured in radians. Areas
A of the planes are measured in m2, while the aspect ratios R denote a
proportional relationship between width and height of the planes. The
quaternions Q denote rotations, and the vectors t denote a displacement
of points measured in meters.

Third, we use a voting scheme for robust matching (i.e., outlier
rejection). We gather all the potential primitive correspondences s ↔ m
in an accumulator space A. If a s ↔ m pair receives at least Z votes,
we consider it as correspondence. The metric Z, given by

Z = µ −σ · τ, µ =
1
m

m

∑
i=1

Ai, σ =

√
∑m

i=1(Ai −µ)2

m−1
, (15)

indicates the number of standard deviations σ by which the Ai differ
from the mean value µ of the accumulator A. The variable τ is a
threshold that we use to control the lower bound of the metric Z.

If we have at least three correspondences available for a candidate
BOWA, we can estimate the T = [ R | t ] ∈ SE(3) which registers
the candidate BOWA to the query scene using a closed-form method
to solve a linear system with 12 unknowns [38]. Similarly to the
verification step used there, we measure the rotational and translational
error by computing the normal deviation error and the plane-to-plane
distance error.

Finally, the first BOWA which achieves at least three matched primi-
tives and has a low registration error to the scene is selected as the final
solution, and we can stop the search.

5 EXPERIMENTAL RESULTS

In the following, we evaluate multiple aspects of our approach, such as
the overall descriptor matching performance, as well as the perceived
localization accuracy in homogeneous and heterogeneous device config-
urations. We captured four sets of models of 25 different scenes with a
third generation iPad Pro (iPad) and a HoloLens 2 (HL2), accumulating
a database of 50 iPad (two sets of 25, S1 and S2) and 50 HL2 (two sets
of 25, S1 and S2) models. To establish a ground truth, we manually
labeled all possible correspondences of geometric primitives between
those models.

5.1 Descriptor matching performance
First, we conducted a matching performance evaluation on all device
combinations (i.e., iPad-iPad, HL2-HL2 and iPad-HL2) and compared
our FBOWA descriptors with FCWA descriptors. In the heterogeneous
case, we match the corresponding models of one device class to the
two models of the other one (i.e., S1 from iPad to S1 from HL2, S1
from iPad to S2 from HL2, etc.).
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Fig. 5: Minimal example of the post-verification step of our scene
recognition method. For a vocabulary tree trained with a single BOWA
(step 0), we store the leaves where the M descriptors fall into. After
querying (step 1), we measure the S-to-M similarity using the distance
function in Equation 14 (step 2). We create a list of descriptors corre-
spondences Dm = (i, j)→ Si ↔M j (step 3). We extract the s ↔ m
primitives correspondences from the Si ↔M j and accumulate them
for voting (step 4). Finally, iff we have at least three matched primitives,
we compute the 6DOF registration (step 5).

The results of the iPad-HL2 experiment are shown in Figure 6, while
the results for the homogeneous device configurations are given in
the supplemental material. While FCWA has a poor performance in
spaces 7, 17, 21 and 23, it gives us a similar amount of true-positive
correspondences as FBOWA in spaces 1, 11 and 24 and only two false-
positives. We further observed that the information encoded in the
FCWA (see Equation 1) reliably detects pairs of primitives, but is rather
weak in outlier rejection. In contrast, FBOWA uses its richer geometric
features for significantly more robust matching results. An example of
this is shown in Figure 7.

To further assess the matching performance, we exhaustively
matched the FCWA and FBOWA descriptors across all device config-
urations, model combinations and scenes. The result of this experiment
is shown in Figure 8. While the diagonal (i.e., matches of correspond-
ing models of the same scene) is barely observable for FCWA, it is
clearly visible for FBOWA, indicating a considerably superior matching
performance.

5.2 Vocabulary tree of BOWA descriptors
In this experiment, we wanted to evaluate the retrieval performance, i.e.,
identify a plausible number P of candidates. We trained the vocabulary
tree with the normalized descriptors of the 25 scenes using a BOWA
created from a first device and query it with a BOWA captured with a
second device from the other device class. Following this approach, the
tree was trained with 13×HL2 and 12×iPad, and queried with 13×iPad
and 12×HL2.

In Figure 9, left, the retrieval performance for both CWA and BOWA
is shown using their respective ROC curves. The correct BOWA can-
didate is found more than 90% within the first 10% candidates in the
database, while the performance of CWA is clearly inferior. It is also
worth noting that, even if CWA is able to identify the correct corre-
sponding model from the database, it is often unable to find enough
primitive correspondences to perform any final localization. In analogy,
this would correspond to the case where in image retrieval the correct
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Fig. 6: Evaluation of the performance of the 14-vector descriptor FBOWA and the 3-vector descriptor FCWA for 25 different scenes for an
iPad-HL2 device combination. Each group of bars shows in blue the ground-truth correspondences (manually labeled), the FBOWA true-positive
correspondences in green, the FCWA true-positive correspondences in yellow, and the false-positive correspondences in red. We show the average
results of four runs, i.e., A. iPad S1 vs. HL2 S1, B. iPad S1 vs. HL2 S2, C. iPad S2 vs. HL2 S1 and D. iPad S2 vs. HL2 S2. The results for the
individual tests A, B, C and D are given in the supplemental material. Note the absence of false-positive correspondences for FBOWA. Due to the
increased descriptiveness of FBOWA, the number of wrong correspondences was zero for all the tests.
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Fig. 7: Example of the inter-device performance of FCWA and FBOWA using a model captured with and iPad Pro (a) and (c), and a model captured
with a HoloLens 2 (b) and (d). The images in (a) and (b) show the highlighted correspondences found using FCWA. The images in (c) and (d)
show the highlighted correspondences found using FBOWA. In (a) and (b) we obtained several false positives using FCWA descriptors, e.g., the
purple and green planes. In (c) and (d), in contrast, we did not obtain false-positive correspondences using FBOWA descriptors.
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Fig. 8: Heatmaps of exhaustive evaluation for all scenes, i.e., (a) all vs.
all of FCWA, (b) all vs. all for FBOWA; Each cell shows the percentage
of total number of found correspondences, i.e., true-positives plus false-
positives. First row: Results of the iPad-iPad test. Second row: Results
of the HL2-HL2 test. Third row: Results of the iPad-HL2 test.
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Fig. 9: Vocabulary tree retrieval performance with six levels and a
branch factor of ten. (a) ROC curves for FCWA and FBOWA, showing
the percentage (y-axis) of BOWA instances that make it into the top x
percent (x-axis) of all BOWA instances stored in the tree. It is crucial
that the corresponding correct BOWA falls at the top of the result, as
verification can only be done for a small fraction of the database when
the database grows large. Hence, we are mainly interested in where the
curves meet the y-axis. (b) ROC curves with an increasing number of
FBOWA descriptors.

corresponding database image is identified; however, the subsequent
geometric validation check fails due to having too few matches or too
many wrong matches.

The graph on the right in Figure 9 shows the retrieval performance
for an increasing number of query FBOWA descriptors. Note that
we achieve 90% performance within the first 10% candidates in the
database using only 128 query FBOWA. The mean number of FBOWA
obtained from the query scenes is 354, 226 median, 1034 max. and
68 min.

For an experiment that discusses the general performance of the
retrieval process on a larger-scale synthetic dataset, the reader is referred
to the supplementary material.
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Fig. 4: Example of synthetic models used to build our vocabulary tree
for scene recognition. Comparing (a) and (b), the number of primitives
in (b) is apparently higher, subject to a larger set of FBOWA descriptors.

where α = (∠(n1,d), ∠(n2,d), ∠(n1,n2)), Q =
(
Qw,Qx,Qy,Qz

)
,

t = (tx, tz). We further consider only the primitives correspondences
s ↔ m and s′ ↔ m′ when all δi are below a minimum value. This
step is particularly important, as our vocabulary tree is created with a
synthetic set of models. Therefore, also FBOWA descriptors which do
not give correct correspondences may fall into the same leaves.

We use eight different measurements, because the 14 features are
defined over different domains. The length of the vector d is measured
in meters, while the angles α ∈ [0,π] are measured in radians. Areas
A of the planes are measured in m2, while the aspect ratios R denote a
proportional relationship between width and height of the planes. The
quaternions Q denote rotations, and the vectors t denote a displacement
of points measured in meters.

Third, we use a voting scheme for robust matching (i.e., outlier
rejection). We gather all the potential primitive correspondences s ↔ m
in an accumulator space A. If a s ↔ m pair receives at least Z votes,
we consider it as correspondence. The metric Z, given by

Z = µ −σ · τ, µ =
1
m

m

∑
i=1

Ai, σ =

√
∑m

i=1(Ai −µ)2

m−1
, (15)

indicates the number of standard deviations σ by which the Ai differ
from the mean value µ of the accumulator A. The variable τ is a
threshold that we use to control the lower bound of the metric Z.

If we have at least three correspondences available for a candidate
BOWA, we can estimate the T = [ R | t ] ∈ SE(3) which registers
the candidate BOWA to the query scene using a closed-form method
to solve a linear system with 12 unknowns [38]. Similarly to the
verification step used there, we measure the rotational and translational
error by computing the normal deviation error and the plane-to-plane
distance error.

Finally, the first BOWA which achieves at least three matched primi-
tives and has a low registration error to the scene is selected as the final
solution, and we can stop the search.

5 EXPERIMENTAL RESULTS

In the following, we evaluate multiple aspects of our approach, such as
the overall descriptor matching performance, as well as the perceived
localization accuracy in homogeneous and heterogeneous device config-
urations. We captured four sets of models of 25 different scenes with a
third generation iPad Pro (iPad) and a HoloLens 2 (HL2), accumulating
a database of 50 iPad (two sets of 25, S1 and S2) and 50 HL2 (two sets
of 25, S1 and S2) models. To establish a ground truth, we manually
labeled all possible correspondences of geometric primitives between
those models.

5.1 Descriptor matching performance
First, we conducted a matching performance evaluation on all device
combinations (i.e., iPad-iPad, HL2-HL2 and iPad-HL2) and compared
our FBOWA descriptors with FCWA descriptors. In the heterogeneous
case, we match the corresponding models of one device class to the
two models of the other one (i.e., S1 from iPad to S1 from HL2, S1
from iPad to S2 from HL2, etc.).
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Fig. 5: Minimal example of the post-verification step of our scene
recognition method. For a vocabulary tree trained with a single BOWA
(step 0), we store the leaves where the M descriptors fall into. After
querying (step 1), we measure the S-to-M similarity using the distance
function in Equation 14 (step 2). We create a list of descriptors corre-
spondences Dm = (i, j)→ Si ↔M j (step 3). We extract the s ↔ m
primitives correspondences from the Si ↔M j and accumulate them
for voting (step 4). Finally, iff we have at least three matched primitives,
we compute the 6DOF registration (step 5).

The results of the iPad-HL2 experiment are shown in Figure 6, while
the results for the homogeneous device configurations are given in
the supplemental material. While FCWA has a poor performance in
spaces 7, 17, 21 and 23, it gives us a similar amount of true-positive
correspondences as FBOWA in spaces 1, 11 and 24 and only two false-
positives. We further observed that the information encoded in the
FCWA (see Equation 1) reliably detects pairs of primitives, but is rather
weak in outlier rejection. In contrast, FBOWA uses its richer geometric
features for significantly more robust matching results. An example of
this is shown in Figure 7.

To further assess the matching performance, we exhaustively
matched the FCWA and FBOWA descriptors across all device config-
urations, model combinations and scenes. The result of this experiment
is shown in Figure 8. While the diagonal (i.e., matches of correspond-
ing models of the same scene) is barely observable for FCWA, it is
clearly visible for FBOWA, indicating a considerably superior matching
performance.

5.2 Vocabulary tree of BOWA descriptors
In this experiment, we wanted to evaluate the retrieval performance, i.e.,
identify a plausible number P of candidates. We trained the vocabulary
tree with the normalized descriptors of the 25 scenes using a BOWA
created from a first device and query it with a BOWA captured with a
second device from the other device class. Following this approach, the
tree was trained with 13×HL2 and 12×iPad, and queried with 13×iPad
and 12×HL2.

In Figure 9, left, the retrieval performance for both CWA and BOWA
is shown using their respective ROC curves. The correct BOWA can-
didate is found more than 90% within the first 10% candidates in the
database, while the performance of CWA is clearly inferior. It is also
worth noting that, even if CWA is able to identify the correct corre-
sponding model from the database, it is often unable to find enough
primitive correspondences to perform any final localization. In analogy,
this would correspond to the case where in image retrieval the correct
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Fig. 6: Evaluation of the performance of the 14-vector descriptor FBOWA and the 3-vector descriptor FCWA for 25 different scenes for an
iPad-HL2 device combination. Each group of bars shows in blue the ground-truth correspondences (manually labeled), the FBOWA true-positive
correspondences in green, the FCWA true-positive correspondences in yellow, and the false-positive correspondences in red. We show the average
results of four runs, i.e., A. iPad S1 vs. HL2 S1, B. iPad S1 vs. HL2 S2, C. iPad S2 vs. HL2 S1 and D. iPad S2 vs. HL2 S2. The results for the
individual tests A, B, C and D are given in the supplemental material. Note the absence of false-positive correspondences for FBOWA. Due to the
increased descriptiveness of FBOWA, the number of wrong correspondences was zero for all the tests.
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Fig. 8: Heatmaps of exhaustive evaluation for all scenes, i.e., (a) all vs.
all of FCWA, (b) all vs. all for FBOWA; Each cell shows the percentage
of total number of found correspondences, i.e., true-positives plus false-
positives. First row: Results of the iPad-iPad test. Second row: Results
of the HL2-HL2 test. Third row: Results of the iPad-HL2 test.
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Fig. 9: Vocabulary tree retrieval performance with six levels and a
branch factor of ten. (a) ROC curves for FCWA and FBOWA, showing
the percentage (y-axis) of BOWA instances that make it into the top x
percent (x-axis) of all BOWA instances stored in the tree. It is crucial
that the corresponding correct BOWA falls at the top of the result, as
verification can only be done for a small fraction of the database when
the database grows large. Hence, we are mainly interested in where the
curves meet the y-axis. (b) ROC curves with an increasing number of
FBOWA descriptors.

corresponding database image is identified; however, the subsequent
geometric validation check fails due to having too few matches or too
many wrong matches.

The graph on the right in Figure 9 shows the retrieval performance
for an increasing number of query FBOWA descriptors. Note that
we achieve 90% performance within the first 10% candidates in the
database using only 128 query FBOWA. The mean number of FBOWA
obtained from the query scenes is 354, 226 median, 1034 max. and
68 min.

For an experiment that discusses the general performance of the
retrieval process on a larger-scale synthetic dataset, the reader is referred
to the supplementary material.
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PC iPad Pro HoloLens 2
Step mean median mean median mean median

1. Load VocTree 45.9 45.2 53.8 52.6 804.4 805.3
2. Scene FBOWA 2.66 1.78 1.36 0.84 13.63 9.61

3. Scene FBOWA query 19.3 19.1 16.8 16.8 124.7 124.4
4. Load anchor 0.03 0.02 0.08 0.05 0.85 0.57

5. Verify FBOWA 0.10 0.10 0.35 0.14 0.49 0.43
6. 6DOF 0.54 0.36 0.58 0.34 3.90 1.74

Table 1: Mean and median runtimes on PC, iPad and HL2 in ms for
the different steps of the scene recognition and pose estimation process,
in order: (1) loading the vocabulary tree; (2) computing the FBOWA
from the primitives observed in the scene; (3) vocabulary tree traversal
time plus the scoring runtime; (4) loading the pre-computed FBOWA
model descriptors; (5) measuring the similarity of the scene FBOWA
vs. the P candidates (see Equation 14) obtained from the step (3); (6)
computing the model to scene registration. Note that (4), (5) and (6)
may be repeated more than once, depending on the number of common
leaves obtained from the initial query (3), and the number of primitive
correspondences (5).

5.3 On-device runtime

In Table 1, the runtimes for the different steps of the scene recognition
and pose estimation process are shown. We implemented our algorithm
on a PC with an Intel Core i7-7700HQ CPU at 2.80 GHz and 16 GB
RAM, a third generation iPad Pro and a HoloLens 2. We saved all the
required data in binary, yet uncompressed files. The total file size of
the 25 anchors is 569 KB, the centers of the tree use 15 MB of storage,
the file size of the di vectors is 100 MB, 4 MB for the ωi weights and
400 KB for the descriptor-to-leaf index.

Table 1 shows that loading all the files takes a lot of time, however,
this is on the one hand due to a naive implementation, on the other
hand it is a one time operation upon start-up. The rest of the steps take
only a few milliseconds, which gives an instant localization and user
experience. The individual results for the 25 rooms are given in the
supplemental material.

5.4 Perceived localization accuracy

Multi-user applications in AR require reasonable accuracy regarding
tracking and localization. The bigger the displacement among the
participants, the harder it becomes to have useful interactions. For
example, a shared virtual object of interest can be manipulated by
either of the users. In a perfect world, the virtual object’s pose would
be precisely shared among all participants. However, tracking systems
and algorithms are not perfect; therefore, we expect a displacement of
a virtual object among the participants. This displacement becomes
even more noticeable when a world-registered digital twin of a physical
object is shown. For densely packed real-world objects (e.g., cable
sockets in a network switch), even small displacements can cause
profound disagreement between human participants.

The internal setup of the HL2 is tuned to generate and maintain a
representation of the environment at first sight. Although this repre-
sentation is altered and updated over time, it is persistent in memory
across device and application restarts. Alterations of the reconstruc-
tion over time also result in updates of geometry detected through the
Scene Understanding SDK. Consequently, our scene representation
looks slightly different if captured at different points in time. Contrary
to the HL2, the iPad creates an environment model ad hoc, which
is static once captured, and does neither alter nor receive updates to
detected geometric primitives as long as the application is not closed.
Again, since iPad creates a reconstruction anew every time, our scene
representation also looks slightly different every time the application
is started. In summary, neither the underlying reconstructions nor the
created geometric scene representations are deterministic.

We desire pose estimation to be close to perfect (i.e., positional error
below 1 cm and angular error below 1◦), provided the geometry of

models resembles the real world structures close enough. According
to several studies [5], HoloLens 2 and iPad achieve a reconstruction
accuracy of ±2 cm, and the internal tracking quality of both devices is
also limited to ±2 cm. Overall, the expectation for the perceived error
between two users is therefore about 4 cm per device. We challenge
this assumption by evaluating the perceived localization accuracy using
BOWA on three HoloLens 2. Participants were asked to place a virtual
sphere at the tip of a physical cone within one of our office scenes, as
shown in Figure 10. This procedure was repeated ten times.

In Figure 11, left, the resulting placement error is visualized con-
firming our initial expectations. The average displacement error for
homogeneous HL2 configurations is 3.72 cm, while, for HL2-iPad
configurations, it is about 7.56 cm with a maximum displacement of
13.47 cm in a single case. Detailed numbers for all runs are given in
the supplementary material. In Figure 11 on the right, a picture of a
similar run using HL2 and iPad is shown, taking the image of the iPad
with the HL2 to have augmentations from both devices in one picture.
Note that, during our tests, the correct scene was detected, respectively,
the localization was successful in all 50 out of 50 evaluation runs.

6 APPLICATION EXAMPLES

In this section, we present application examples which demonstrate the
versatility of BOWA across multiple AR platforms, namely, a recording
tool, a collaborative object manipulation tool, and a collaborative chess
game. All of our examples use Unity software and our BOWA library to
create, respectively, use the framework for model creation and instant
global localization.

6.1 Scene recording and modeling
In order to collect a compelling set of environments, we implemented
a tool to record BOWA descriptors of a scene and verify new BOWA
models in terms of their localization accuracy. This tool runs on all
platforms, i.e., Android, iOS and HoloLens 2. Figure 2 depicts the
application running on those platforms within the same physical en-
vironment. As opposed to the 2D UI on the iPad, on the HoloLens 2
the interaction is triggered by voice commands. All models used for
offline experimental evaluations were acquired using the application on
individual platforms. The application is also used to repeatedly test the
localization and 6DOF pose estimation.

6.2 Collaborative 3D object design
Our second example is a collaborative 3D object manipulation tool. It
heavily relies on remote Javascript function invocation within Unity
software using the RagRug [16] toolkit for AR development. RagRug
provides an infrastructure to develop location-aware, distributed ap-
plications. The backbone of the framework is formed by MQTT and
a local server-side Node-RED instance to span an augmented space
shared by multiple users. As there is no exchange of environment
information (i.e., imagery, 3D scene captures or even BOWAs) between
devices, there is no sensitive data transmitted whatsoever. The core
functionality of RagRug in this scenario is to provide 3D model re-
sources for download, to allow collaborative management and handling
of 3D objects in the shared space, and to broadcast information about
the poses of other users sharing the space in real time2. The underly-
ing concept is that the virtual models are part of the persistent space
spanned by RagRug, as opposed to the clients having the responsibility
of synchronizing local changes across devices.

First, several users are registered within the same space based on our
BOWA approach. Then, virtual objects are shared between co-present
users upon creation. Each participant can manipulate every object’s
pose. Without external infrastructure to establish inter-participant regis-
tration, such features can be expensive to build and maintain, sometimes
requiring custom hardware [19]. However, we rely on the matching of
BOWA to seamlessly register the participant’s spaces. Some exemplary
snapshots of this application are shown in Figure 12.

2A server-less setup using BOWA with similar functionality could also be
implemented by replacing RagRug with peer discovery and subsequent peer-to-
peer communication, as well as pre-loaded resources on each device.
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Fig. 10: Multi-user displacement evaluation. We asked three participants (P1, P2, P3) to place a measuring sphere on the tip of a cone to evaluate
the spatial displacement. Each sphere is shared among each virtual space. (a) shows the scene from participant’s P3 perspective, (b) from the
point of view of P1, and (c) from the point of view of P2. The red circle depicts the three measuring spheres. The actual measured displacements
amount to ∆P1P2 = 2.41 cm, ∆P2P3 = 4.11 cm and ∆P1P3 = 5.63 cm, where the overall mean is 4.03 cm. Multiple runs of this evaluation
follow the same trend within our office test scenes. The measurement was taken approximately at 1 m distance from the local origins.
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Fig. 11: Perceived localization accuracy. (a) Boxplot of the displace-
ment between devices: 1. HL21−2, 2. HL21−3, 3. HL22−3, 4. Mean
of 1 to 4, 5. iPad-HL2. (b) Snapshot taken with the HL2 (blue) of
the iPad (yellow) to visualize the perceived displacement between the
former and the latter.

6.3 Virtual chess
As a last example, we implemented a persistent chess game (Figure 13)
using animated 3D models on top of RagRug and Chess.js3. On the
one hand, it is inspired by the original Battle Chess game from the
late 1980s4 using animated and fighting virtual characters. On the
other hand, concerning the interaction aspect, it picks up the concept of
playing chess games in public, as contained in several TV series and
theater movies located, for example, in New York’s Central Park [2].

Multiple users register in the same space using the underlying BOWA
framework. A virtual stand-up chess game is placed on a freely acces-
sible table, and every participant who shares the space can just walk up
to the table and take a turn. There is no given assignment of black and
white to individual participants; however, rules about the movement of
characters and color alternation are enforced. Because the management
of the game is done within RagRug, remote players can use a (non-AR)
browser interface to manipulate the game state.

7 DISCUSSION AND CONCLUSION

In this work, we presented an approach to perform instant large-scale
localization and pose estimation based on geometric primitives, i.e.,
planes. An important aspect of our work is that it works cross-platform
on state-of-the-art mobile devices like Lidar-iPad or HoloLens 2, and
that it is – to the best of our knowledge – the first approach enabling
versatile, mobile, light-weight and cross-platform sharing of AR ex-
periences without vendor lock-in. The performance of our method is

3https://github.com/jhlywa/chess.js
4https://en.wikipedia.org/wiki/Battle_Chess

also confirmed through our extensive experimental evaluation and the
sample applications presented.

Extension to Spheres and Cylinders While we have not used
spheres and cylinders in our experiments, it is worth noting that these
primitives are still supported in BOWA. Both primitive types can be in-
cluded by putting additional descriptor validation rules in place. Includ-
ing cylinders is trivially possible by redefining Equation 3 to contain
the surface area of a cylinder and changing Equation 4 to define the
aspect ratio as the ratio between the diameter and height of a cylinder.
The use of spheres is slightly more involved, as it requires not only
modifications to Equation 3 and Equation 4, but also obtaining a known
orientation. The issue can be resolved by measuring the gravity vector
and inferring the main orientation of a scene (e.g., from walls and
floor). Under these assumptions, all other dimensions of FBOWA can
be inferred as well.

Extension to other Platforms Although originally planned, Meta
did not include depth-sensing hardware in the Meta Quest Pro. There-
fore, core features, such as plane detection in pass-through mode, are
not available. Snap’s newest generation AR spectacles feature plane
detection; however, because of the lock-in to Snap’s Lens Studio and
privacy concerns, sharing any kind of information (i.e., even loading
a model over a network connection) is prohibitive. The only plausi-
ble candidate to extend our platform to at this point in time are the
Magic Leap 2 headsets, which have also been evaluated. For more
details about this evaluation, the interested reader is referred to the
supplementary materials. With the drive towards deep-learning-based
approaches, we expect more and more features to become available on
mobile devices in general. This might include object recognition as
well as some semantic segmentation, which we could leverage some
time in the future for our approach. As it stands, a major limitation
of BOWA is the lack of support for geometric primitive detection on
platform levels. Examples of the use of cylinders using the original
scenes from CWA [38] can be found in the supplementary material.

Privacy Following an ongoing discussion, it seems that primarily
the use of image materials and other metadata, such as WIFI coverage,
IMEI numbers or GPS information, might cause issues concerning the
privacy of users. Similarly, motion patterns of the user or body parts
might be a source of user identification, as discussed e.g., in the work
of Liebers et al. [27]. The scene representation in BOWA consists
of geometric primitives only. Even reconstructing the models gives
only little insight into the interior of a space, as can be seen from the
examples shown in Figure 7. The localization approach overall does not
use any image material or other metadata to prune the search space, nor
does it use any kind of information about the user motion or interaction.
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PC iPad Pro HoloLens 2
Step mean median mean median mean median

1. Load VocTree 45.9 45.2 53.8 52.6 804.4 805.3
2. Scene FBOWA 2.66 1.78 1.36 0.84 13.63 9.61

3. Scene FBOWA query 19.3 19.1 16.8 16.8 124.7 124.4
4. Load anchor 0.03 0.02 0.08 0.05 0.85 0.57

5. Verify FBOWA 0.10 0.10 0.35 0.14 0.49 0.43
6. 6DOF 0.54 0.36 0.58 0.34 3.90 1.74

Table 1: Mean and median runtimes on PC, iPad and HL2 in ms for
the different steps of the scene recognition and pose estimation process,
in order: (1) loading the vocabulary tree; (2) computing the FBOWA
from the primitives observed in the scene; (3) vocabulary tree traversal
time plus the scoring runtime; (4) loading the pre-computed FBOWA
model descriptors; (5) measuring the similarity of the scene FBOWA
vs. the P candidates (see Equation 14) obtained from the step (3); (6)
computing the model to scene registration. Note that (4), (5) and (6)
may be repeated more than once, depending on the number of common
leaves obtained from the initial query (3), and the number of primitive
correspondences (5).

5.3 On-device runtime

In Table 1, the runtimes for the different steps of the scene recognition
and pose estimation process are shown. We implemented our algorithm
on a PC with an Intel Core i7-7700HQ CPU at 2.80 GHz and 16 GB
RAM, a third generation iPad Pro and a HoloLens 2. We saved all the
required data in binary, yet uncompressed files. The total file size of
the 25 anchors is 569 KB, the centers of the tree use 15 MB of storage,
the file size of the di vectors is 100 MB, 4 MB for the ωi weights and
400 KB for the descriptor-to-leaf index.

Table 1 shows that loading all the files takes a lot of time, however,
this is on the one hand due to a naive implementation, on the other
hand it is a one time operation upon start-up. The rest of the steps take
only a few milliseconds, which gives an instant localization and user
experience. The individual results for the 25 rooms are given in the
supplemental material.

5.4 Perceived localization accuracy

Multi-user applications in AR require reasonable accuracy regarding
tracking and localization. The bigger the displacement among the
participants, the harder it becomes to have useful interactions. For
example, a shared virtual object of interest can be manipulated by
either of the users. In a perfect world, the virtual object’s pose would
be precisely shared among all participants. However, tracking systems
and algorithms are not perfect; therefore, we expect a displacement of
a virtual object among the participants. This displacement becomes
even more noticeable when a world-registered digital twin of a physical
object is shown. For densely packed real-world objects (e.g., cable
sockets in a network switch), even small displacements can cause
profound disagreement between human participants.

The internal setup of the HL2 is tuned to generate and maintain a
representation of the environment at first sight. Although this repre-
sentation is altered and updated over time, it is persistent in memory
across device and application restarts. Alterations of the reconstruc-
tion over time also result in updates of geometry detected through the
Scene Understanding SDK. Consequently, our scene representation
looks slightly different if captured at different points in time. Contrary
to the HL2, the iPad creates an environment model ad hoc, which
is static once captured, and does neither alter nor receive updates to
detected geometric primitives as long as the application is not closed.
Again, since iPad creates a reconstruction anew every time, our scene
representation also looks slightly different every time the application
is started. In summary, neither the underlying reconstructions nor the
created geometric scene representations are deterministic.

We desire pose estimation to be close to perfect (i.e., positional error
below 1 cm and angular error below 1◦), provided the geometry of

models resembles the real world structures close enough. According
to several studies [5], HoloLens 2 and iPad achieve a reconstruction
accuracy of ±2 cm, and the internal tracking quality of both devices is
also limited to ±2 cm. Overall, the expectation for the perceived error
between two users is therefore about 4 cm per device. We challenge
this assumption by evaluating the perceived localization accuracy using
BOWA on three HoloLens 2. Participants were asked to place a virtual
sphere at the tip of a physical cone within one of our office scenes, as
shown in Figure 10. This procedure was repeated ten times.

In Figure 11, left, the resulting placement error is visualized con-
firming our initial expectations. The average displacement error for
homogeneous HL2 configurations is 3.72 cm, while, for HL2-iPad
configurations, it is about 7.56 cm with a maximum displacement of
13.47 cm in a single case. Detailed numbers for all runs are given in
the supplementary material. In Figure 11 on the right, a picture of a
similar run using HL2 and iPad is shown, taking the image of the iPad
with the HL2 to have augmentations from both devices in one picture.
Note that, during our tests, the correct scene was detected, respectively,
the localization was successful in all 50 out of 50 evaluation runs.

6 APPLICATION EXAMPLES

In this section, we present application examples which demonstrate the
versatility of BOWA across multiple AR platforms, namely, a recording
tool, a collaborative object manipulation tool, and a collaborative chess
game. All of our examples use Unity software and our BOWA library to
create, respectively, use the framework for model creation and instant
global localization.

6.1 Scene recording and modeling
In order to collect a compelling set of environments, we implemented
a tool to record BOWA descriptors of a scene and verify new BOWA
models in terms of their localization accuracy. This tool runs on all
platforms, i.e., Android, iOS and HoloLens 2. Figure 2 depicts the
application running on those platforms within the same physical en-
vironment. As opposed to the 2D UI on the iPad, on the HoloLens 2
the interaction is triggered by voice commands. All models used for
offline experimental evaluations were acquired using the application on
individual platforms. The application is also used to repeatedly test the
localization and 6DOF pose estimation.

6.2 Collaborative 3D object design
Our second example is a collaborative 3D object manipulation tool. It
heavily relies on remote Javascript function invocation within Unity
software using the RagRug [16] toolkit for AR development. RagRug
provides an infrastructure to develop location-aware, distributed ap-
plications. The backbone of the framework is formed by MQTT and
a local server-side Node-RED instance to span an augmented space
shared by multiple users. As there is no exchange of environment
information (i.e., imagery, 3D scene captures or even BOWAs) between
devices, there is no sensitive data transmitted whatsoever. The core
functionality of RagRug in this scenario is to provide 3D model re-
sources for download, to allow collaborative management and handling
of 3D objects in the shared space, and to broadcast information about
the poses of other users sharing the space in real time2. The underly-
ing concept is that the virtual models are part of the persistent space
spanned by RagRug, as opposed to the clients having the responsibility
of synchronizing local changes across devices.

First, several users are registered within the same space based on our
BOWA approach. Then, virtual objects are shared between co-present
users upon creation. Each participant can manipulate every object’s
pose. Without external infrastructure to establish inter-participant regis-
tration, such features can be expensive to build and maintain, sometimes
requiring custom hardware [19]. However, we rely on the matching of
BOWA to seamlessly register the participant’s spaces. Some exemplary
snapshots of this application are shown in Figure 12.

2A server-less setup using BOWA with similar functionality could also be
implemented by replacing RagRug with peer discovery and subsequent peer-to-
peer communication, as well as pre-loaded resources on each device.

Cone Cone

P1 P2 P2
P3

Cone

P1
P3

(a) (b) (c)
Fig. 10: Multi-user displacement evaluation. We asked three participants (P1, P2, P3) to place a measuring sphere on the tip of a cone to evaluate
the spatial displacement. Each sphere is shared among each virtual space. (a) shows the scene from participant’s P3 perspective, (b) from the
point of view of P1, and (c) from the point of view of P2. The red circle depicts the three measuring spheres. The actual measured displacements
amount to ∆P1P2 = 2.41 cm, ∆P2P3 = 4.11 cm and ∆P1P3 = 5.63 cm, where the overall mean is 4.03 cm. Multiple runs of this evaluation
follow the same trend within our office test scenes. The measurement was taken approximately at 1 m distance from the local origins.
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Fig. 11: Perceived localization accuracy. (a) Boxplot of the displace-
ment between devices: 1. HL21−2, 2. HL21−3, 3. HL22−3, 4. Mean
of 1 to 4, 5. iPad-HL2. (b) Snapshot taken with the HL2 (blue) of
the iPad (yellow) to visualize the perceived displacement between the
former and the latter.

6.3 Virtual chess
As a last example, we implemented a persistent chess game (Figure 13)
using animated 3D models on top of RagRug and Chess.js3. On the
one hand, it is inspired by the original Battle Chess game from the
late 1980s4 using animated and fighting virtual characters. On the
other hand, concerning the interaction aspect, it picks up the concept of
playing chess games in public, as contained in several TV series and
theater movies located, for example, in New York’s Central Park [2].

Multiple users register in the same space using the underlying BOWA
framework. A virtual stand-up chess game is placed on a freely acces-
sible table, and every participant who shares the space can just walk up
to the table and take a turn. There is no given assignment of black and
white to individual participants; however, rules about the movement of
characters and color alternation are enforced. Because the management
of the game is done within RagRug, remote players can use a (non-AR)
browser interface to manipulate the game state.

7 DISCUSSION AND CONCLUSION

In this work, we presented an approach to perform instant large-scale
localization and pose estimation based on geometric primitives, i.e.,
planes. An important aspect of our work is that it works cross-platform
on state-of-the-art mobile devices like Lidar-iPad or HoloLens 2, and
that it is – to the best of our knowledge – the first approach enabling
versatile, mobile, light-weight and cross-platform sharing of AR ex-
periences without vendor lock-in. The performance of our method is

3https://github.com/jhlywa/chess.js
4https://en.wikipedia.org/wiki/Battle_Chess

also confirmed through our extensive experimental evaluation and the
sample applications presented.

Extension to Spheres and Cylinders While we have not used
spheres and cylinders in our experiments, it is worth noting that these
primitives are still supported in BOWA. Both primitive types can be in-
cluded by putting additional descriptor validation rules in place. Includ-
ing cylinders is trivially possible by redefining Equation 3 to contain
the surface area of a cylinder and changing Equation 4 to define the
aspect ratio as the ratio between the diameter and height of a cylinder.
The use of spheres is slightly more involved, as it requires not only
modifications to Equation 3 and Equation 4, but also obtaining a known
orientation. The issue can be resolved by measuring the gravity vector
and inferring the main orientation of a scene (e.g., from walls and
floor). Under these assumptions, all other dimensions of FBOWA can
be inferred as well.

Extension to other Platforms Although originally planned, Meta
did not include depth-sensing hardware in the Meta Quest Pro. There-
fore, core features, such as plane detection in pass-through mode, are
not available. Snap’s newest generation AR spectacles feature plane
detection; however, because of the lock-in to Snap’s Lens Studio and
privacy concerns, sharing any kind of information (i.e., even loading
a model over a network connection) is prohibitive. The only plausi-
ble candidate to extend our platform to at this point in time are the
Magic Leap 2 headsets, which have also been evaluated. For more
details about this evaluation, the interested reader is referred to the
supplementary materials. With the drive towards deep-learning-based
approaches, we expect more and more features to become available on
mobile devices in general. This might include object recognition as
well as some semantic segmentation, which we could leverage some
time in the future for our approach. As it stands, a major limitation
of BOWA is the lack of support for geometric primitive detection on
platform levels. Examples of the use of cylinders using the original
scenes from CWA [38] can be found in the supplementary material.

Privacy Following an ongoing discussion, it seems that primarily
the use of image materials and other metadata, such as WIFI coverage,
IMEI numbers or GPS information, might cause issues concerning the
privacy of users. Similarly, motion patterns of the user or body parts
might be a source of user identification, as discussed e.g., in the work
of Liebers et al. [27]. The scene representation in BOWA consists
of geometric primitives only. Even reconstructing the models gives
only little insight into the interior of a space, as can be seen from the
examples shown in Figure 7. The localization approach overall does not
use any image material or other metadata to prune the search space, nor
does it use any kind of information about the user motion or interaction.
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Fig. 12: Three participants use HoloLens 2 devices to collaboratively create the sculpture, while a fourth participant is using the Lidar iPad to
record the actions. All participants move within a shared and localized 3D world in real-time, receiving updates of poses and objects accordingly.

Fig. 13: A virtual chess game with animated characters is placed on a freely accessible table, while all surrounding participants sharing the space
can interact with the individual characters on the board. Note that we only enforce the alternation of black and white, as well as the validity of
moves with respect to the rules, but do not assign player roles to the individual devices, respectively participants.
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Fig. 12: Three participants use HoloLens 2 devices to collaboratively create the sculpture, while a fourth participant is using the Lidar iPad to
record the actions. All participants move within a shared and localized 3D world in real-time, receiving updates of poses and objects accordingly.

Fig. 13: A virtual chess game with animated characters is placed on a freely accessible table, while all surrounding participants sharing the space
can interact with the individual characters on the board. Note that we only enforce the alternation of black and white, as well as the validity of
moves with respect to the rules, but do not assign player roles to the individual devices, respectively participants.
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