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Abstract

While most state-of-the-art instance segmentation meth-
ods produce binary segmentation masks, geographic and
cartographic applications typically require precise vector
polygons of extracted objects instead of rasterized output.
This paper introduces PolyWorld, a neural network that di-
rectly extracts building vertices from an image and connects
them correctly to create precise polygons. The model pre-
dicts the connection strength between each pair of vertices
using a graph neural network and estimates the assign-
ments by solving a differentiable optimal transport problem.
Moreover, the vertex positions are optimized by minimiz-
ing a combined segmentation and polygonal angle differ-
ence loss. PolyWorld significantly outperforms the state of
the art in building polygonization and achieves not only no-
table quantitative results, but also produces visually pleas-
ing building polygons. Code and trained weights are pub-
licly available at https://github.com/zorzi-s/
PolyWorldPretrainedNetwork.

1. Introduction
The extraction of vector representations of building poly-

gons from aerial and satellite imagery has been growing in
importance in many remote sensing applications, such as
cartography, city modelling and reconstruction, as well as
map generation. Most building extraction and polygoniza-
tion methods rely on the vectorization of probability maps
produced by a segmentation network. These approaches are
not end-to-end learned, which means that imperfections and
artifacts produced by the segmentation model are carried
through the entire pipeline with the consequent generation
of unregular polygons.

In this paper, we present a new way of tackling the build-
ing polygonization problem. Rather than learning a seg-
mentation network which is then followed by a polygoniza-
tion method, we propose a novel neural network architec-

Figure 1. Polygonal object extraction with PolyWorld. The
method uses a CNN backbone to detect vertex candidates from an
image, and aggregates the information of the visual descriptors ex-
ploiting a graph neural network. The connections between vertices
are generated solving a differentiable optimal transport problem.

ture called PolyWorld that detects building corners from
a satellite image and uses a learned matching procedure
to connect them in order to form polygons. Thereby, our
method allows the generation of valid polygons in an end-
to-end fashion.

PolyWorld extracts positions and visual descriptors of
building corners using a Convolutional Neural Network
(CNN) and generates polygons by evaluating whether the
connections between vertices are valid. This procedure
finds the best connection assignment between the detected
vertex descriptors, which means that every corner must be
matched with the subsequent vertex of the polygon. The
connections between polygon vertices can be represented as
the solution of a linear sum assignment problem. In Poly-
World, an important role is played by a Graph Neural Net-
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work (GNN) that propagates global information through all
the vertex embeddings, increasing the descriptors’ distinc-
tiveness. Moreover, it refines the position of the detected
corners in order to minimize the combined segmentation
and polygonal angle difference loss. PolyWorld demon-
strates superior performance compared to the state of the art
building extraction and polygonization methods, not only
achieving higher segmentation and detection results, but
also producing more regular and clean building polygons.

2. Related work

Since building detection and segmentation from satellite
images has been of major research interest throughout the
last few decades, discussing all work is beyond the scope of
this paper. In this section we therefore focus on the most
relevant contributions in different related categories.

Building segmentation: Before the great success of
deep learning methods, building footprint delineation was
mainly done with multi-step, bottom-up approaches by
combining multi-spectral overhead images and airborne LI-
DAR data [3, 31]. Nowadays, deep learning-based meth-
ods are state-of-the-art, mainly addressing the problem by
refining raster footprints via heuristic polygonization ap-
proaches computed by powerful semantic or instance seg-
mentation networks [11–15,21]. The majority of these seg-
mentation models are trained with cross entropy, soft in-
tersection over union, or Focal based losses [4, 18, 28, 34],
achieving high scores in terms of intersection over union,
recall, and precision, but mostly generating irregular build-
ing outlines that are neither visually pleasing, nor employ-
able in most cartographic applications. A typical problem
of semantic and instance segmentation networks is, in fact,
the inability of outlining straight building walls and sharp
corners in presence of ground truth noise, e.g. misalign-
ment between a segmentation mask and an intensity image.
Some publications, therefore, suggest to post-process the
segmented building footprints in order to align the segmen-
tation outlines to the actual building contours described in
the intensity image. DSAC [24] employs an Active Contour
Model to integrate geometrical priors and constraints in the
segmentation process, while DARNet [7] proposes a loss
function that encourages the contours to match the building
boundaries. Another technique to make the building con-
tours more regular and realistic is to combine adversarial
and regularized losses [35, 36, 40].

Polygon prediction: Standard semantic and instance
segmentation networks are easy to train and generate accu-
rate segmentation masks, but most remote sensing applica-
tions that involve building layers require segmentation data
in vector format rather than rasterized masks. Object detec-
tion and polygonization methods found in literature can be
classified into two categories.

The first category includes methods that perform the vec-
torization of grid-like information, e.g. the probability map
produced by a segmentation network. In [38] the authors
corrected the segmentation masks produced with Mask R-
CNN [13] by first simplifying the detected boundaries us-
ing the Douglas-Peucker algorithm [9] and subsequently re-
fining the resulting polygons using a Minimum Descriptor
Length method [32]. More recently, Chen et al. [6] sug-
gested to regularize the segmentation produced with a CNN
via quantizing the histogram of building boundaries in angle
space, which can be achieved by exploiting a Relative Angle
Gradient Transform. Zorzi et al. [39] applied three differ-
ent networks in series to perform the extraction and poly-
gonization. Their method uses a CNN to generate build-
ing segmentation; then, it performs a regularization on the
raster data by applying an autoencoder trained with regu-
larized [35, 36] and adversarial losses, and finally detects
building corners using a third CNN. The polygonization is
performed by ordering the detected corners following the
regularized boundaries. All these methods are developed
with the idea of decomposing the building extraction and
polygonization problem into smaller tasks that can be tack-
led individually. As a result, most of these approaches are
computationally heavy, they lack of parallelization and their
hyperparameters must be carefully tuned in order to achieve
the desired results. Most importantly, since they are com-
posed of a sequence of blocks, these methods can accumu-
late errors through their pipeline, which can harm the qual-
ity of the final polygonization. The current state of the art
in the field is achieved by the Frame Field Learning (FFL)
method [10], which generates a vector field that encodes
useful boundary information alongside the corresponding
segmentation mask. Moreover, the contour is optimized
to be aligned to the frame field using an Active Skeleton
Model.

The second category is represented by methods that di-
rectly learn a vector representation. PolyTransform [17] ini-
tializes a polygon for every object instance and refines the
vertex positions using a Transformer network [37]. Curve
GCN [20] learns a graph convolutional network to deform
polygons in an iterative manner. Some networks also utilize
recurrent neural networks (RNN) to extract polygons vertex
by vertex, e.g. Polygon-RNN [5] and Polygon-RNN++ [1].
Also PolyMapper [16] applies a RNN to predict building
and road vertices one by one. All these methods directly
process polygon parameters but they are typically more dif-
ficult to train and they need multiple iterations during in-
ference. Moreover they have troubles dealing with complex
building shapes, e.g. structures having curved walls or holes
in their shape. PolyWorld, which is presented in this paper,
fits well into the second category of direct polygon predic-
tion, although the employed architecture and general idea
fundamentally differs from all existing work.
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Figure 2. In PolyWorld, the connections between polygon vertices
are described with a permutation matrix. The i-th row of the per-
mutation matrix Pclock or Pcount indicates the index of the next
clockwise or counterclockwise vertex connected to vi. Please note
that the permutation matrix of the clockwise oriented polygons
Pclock is the transpose of the permutation matrix of the counter-
clockwise oriented polygons Pcount.

3. The PolyWorld Architecture
The main idea behind PolyWorld is to represent building

polygons in the scene as a set of vertices connected accord-
ing to a permutation matrix, as illustrated in Figure 2. Each
corner of the polygon is associated to a specific row of the
permutation matrix that indicates the next clockwise vertex.
The permutation matrix must fulfill certain polygonal con-
straints: 1 every vertex corresponds to at most one clock-
wise connection and one counterclockwise connection; 2
the permutation matrix of the clockwise oriented polygons
is the transpose of the counterclockwise permutation ma-
trix; 3 a vertex having its entry in the diagonal of the per-
mutation matrix can be discarded since, in reality, there are
no building polygons having a single corner, e.g. vertex v6

in Fig. 2.
PolyWorld is composed of three blocks: a Vertex Detec-

tion Network that extracts a set of possible building corner
candidates, an Attentional Graph Neural Network that ag-
gregates information through the vertices and refines their
position, and an Optimal Connection Network that gener-
ates the connections between vertices. Given the input im-
age, the model provides the position of the detected building
corners and a valid permutation matrix.

3.1. Vertex Detection Network

The vertex detection network is depicted in Figure 3.
The module receives an image I ∈ R3×H×W as in-
put, it forward propagates I through a fully convolutional
backbone, and returns a D-dimensional feature map F ∈

Figure 3. The Vertex Detection Network of PolyWorld. A back-
bone CNN receives the intensity image and returns a feature map
and a vertex detection mask. A Non Maximum Suppression
(NMS) algorithm removes undesired vertices and returns N lo-
cations that correspond to the highest peaks in the detection mask.
The visual descriptors are then extracted from the feature map at
every location provided by the NMS.

RD×H×W . The vertex detection mask Y ∈ RH×W is ob-
tained by propagating the features F through a 1×1 convo-
lutional layer. The detection mask Y is then filtered using
a Non Maximum Suppression algorithm with kernel size of
3, in order to retain the most relevant peaks. The positions p
of the N highest peaks are then used to extract N visual de-
scriptors d ∈ RD from the feature map F . Vertex positions
consist of x and y image coordinates pi := (x, y)i. During
training, the backbone not only learns to produce a feature
map F useful to segment building corners but also learns to
embed an abstract representation of the latter. During train-
ing, this information is constrained to represent the building
vertex by matching with the other detected corners.

3.2. Attentional Graph Neural Network

Besides the position and the visual appearance of a build-
ing corner, considering other contextual information is es-
sential to describe it in a more rich and distinctive way.
Capturing relationships between its position and appearance
with other vertices in the image can be helpful to link it
with corners having the same roof style, having a compat-
ible shape and pose for the matching, or simply with adja-
cent corners. Motivated by this consideration, we design the
next PolyWorld block using an attentional graph neural net-
work that computes a set of matching descriptors mi ∈ RD

by learning short and long term vertex relationships given
the vertex positions p and the visual descriptors v extracted
by the vertex detection network. Moreover, this block also
estimates a positional offset ti ∈ R2 in order to refine the
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Figure 4. The Attentional Graph Neural Network and the Optimal Connection Network of PolyWorld. The first module uses a vertex
encoder to map vertex positions p and visual descriptors d into a single vector, and uses L self-attention layers to increase their distinc-
tiveness. The module returns a set of offsets t and the matching descriptors m. The offsets are used to refine the vertex positions, while m
are propagated through the optimal connection network that creates a N ×N score matrix and generates the permutation matrix using the
Sinkhorn algorithm.

vertex positions, optimizing the corner angle and the foot-
print segmentation. As we will show in the following chap-
ters, aggregating features from all the detected vertices and
refining the vertex positions leads not only to improved seg-
mentation scores, but also to more realistic building poly-
gons.

3.2.1 Vertex Encoder

Before forward propagating through the graph neural net-
work, positions p and visual descriptors d are merged by a
Multilayer Perceptron (MLP).

d′i = MLPenc ([di||pi]) (1)

MLPenc receives the concatenation [·||·] of pi and di and
returns a new descriptor d′i ∈ RD that encodes positional
and visual information together.

3.2.2 Self Attention Network

The aggregation is performed by a self-attention mecha-
nism [37] that propagates the information across vertices,
increasing their contextual information.

Given the intermediate descriptors x ∈ RD×N , the
model employs a linear projection to produce a queryQ(x),
a key K(x), and a value V (x). The weights between the
nodes are computed taking the softmax over the dot product
Q(x)K(x)>. The result is then multiplied with the values
V (x) in order to propagate the information across all the
vertices. The attention mechanism can be written as:

A = softmax
(
Q(x) ·K(x)>
√
nk

)
V (x) (2)

where the normalization term nk is the dimension of the
queries and keys.

This operation is repeated for a fixed numbers of layers
L. The messageA(l) ∈ RD×N is the attention result at layer
l and it is used to update the vertex descriptors at every step.
We indicate a(l)

i the i-th column of A(l), that represents the
attention message relative to the i-th vertex of the graph. In
every layer the vertex descriptors are updated as follows:

x
(l+1)
i = MLP(l)

([
x

(l)
i ||a

(l)
i

])
(3)

The embeddings received by the the first attention layer
are the descriptors produced by the vertex encoder d′ =
x(l=1). Finally, the embedding of the i-th vertex produced
by the last attention layer x(L)

i is decomposed in two com-
ponents: a matching descriptor mi ∈ RD and a positional
offset ti ∈ R2.

mi = MLPmatch

(
x

(L)
i

)
(4)

ti = MLPoffset

(
x

(L)
i

)
(5)

The matching descriptors are used further to generate
a valid combination of connections between the vertices,
while the offsets are combined with the vertex positions as
follows:
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p̂i = pi + γ · ti (6)

where γ is a factor that regulates the correction radius since
the offsets are generated through a HardTanh activation
function and the values range between −1 and 1.

3.3. Optimal Connection Network

The last block of PolyWorld is the optimal connection
network that connects the vertices generating a permutation
matrix P ∈ RN×N . The assignment can be obtained by
calculating a score matrix S ∈ RN×N for all possible vertex
pairs and maximizing the overall score

∑
i,j Pi,jSi,j .

Given two matching descriptorsmi andmj encoding the
information of two distinct vertices, we exploit MLPclock

to detect whether the clockwise connection mi −→ mj is
possible. The network receives the concatenation of the
two descriptors and returns a high score value if the con-
nection between them is strong; e.g. if mi represents the
top-left corner of an orange roof, it is likely that mj is the
next clockwise vertex if it represents a top-right corner of
an orange roof.

sclocki−→j = MLPclock ([mi||mj ]) (7)

Vice versa we estimate how strong is the counterclock-
wise connection mi −→ mj exploiting a second network
MLPcount.

scounti−→j = MLPcount ([mi||mj ]) (8)

By enforcing constraint 2 , we can establish a consis-
tency check between the clockwise and the counterclock-
wise path of vertices. The final score matrix S is calculated
as the combination of the clockwise score matrix Sclock and
the transpose version of the counterclockwise score matrix
Scount:

S = Sclock + S>count (9)

The double path consistency ensures to have stronger
matches, better connections and, ultimately, higher polygon
quality.

As a final step, we use the Sinkhorn algorithm [8,27,29,
30] to find the optimal assignment matrix P given the score
matrix S. The Sinkhorn is a GPU efficient and differen-
tiable version of the Hungarian algorithm [26], used to solve
linear sum assignment problems, and it consists of normal-
izing rows and columns of exp(S) for a certain amount of
iterations.

4. Losses
Detection: We train the corner detection as a segmenta-

tion task using weighted binary cross-entropy loss:

Ldet =− ω ·
H∑
i=1

W∑
j=1

Ȳi,j · log (Yi,j)

−
H∑
i=1

W∑
j=1

(1− Ȳi,j) · log (1− Yi,j)

(10)

The ground truth Ȳ is a sparse array of zeros. Pixels
indicating the presence of a building corner have a value of
one. Since the segmentation is heavily unbalanced for the
foreground pixels, we use the factor ω to counterbalance
positive samples.

Matching: The attentional graph neural network and the
optimal connection network of PolyWorld are fully differ-
entiable which allows us to backpropagate from the gener-
ated partial assignment to the backbone that generates the
visual descriptors. This path is trained in a supervised man-
ner from the ground truth permutation matrix P̄ using cross
entropy loss:

Lmatch = −
N∑
i=1

N∑
j=1

P̄i,j · log (Pi,j) (11)

Due to the iterative normalization through rows and
columns made by the Sinkhorn algorithm, minimizing the
negative log-likelihood of the positive matches of P leads
to simultaneously maximizing the precision and the recall
of the matching.

Positional refinement: Due to low image resolution,
ground truth misalignments, or wrong building labelling,
the position of the vertices provided by the vertex detection
network is not optimal in practice. The subsequent match-
ing procedure, therefore, could produce polygons having
corner angles different from the ground truth, altering the
visual appeal of the extracted polygons. In order to repress
this phenomenon, we minimize the difference between the
corner angles of the predicted polygons and the ground truth
polygons.

We indicate with C the function that converts a permu-
tation matrix and vertex positions to a list of polygons P .
The polygons predicted by PolyWorld and the ground truth
polygons are then P = C (p̂, P ) and P̄ = C

(
p̄, P̄

)
, re-

spectively. Indicating with Pk the k-th polygon instance
extracted from the image and composed of a set of clock-
wise ordered vertex positions, we formulate the angle loss
as:

Langle =

K∑
k=1

∑
(u)v)w)

1− exp
(
−σ ·

∣∣∆k,(u,v,w)

∣∣)
∆k,(u,v,w) = ∠ (p̂u, p̂v, p̂w)k − ∠ (p̄u, p̄v, p̄w)k

(12)
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where (u ) v ) w) denotes the indices of any three consecu-
tive vertices in polygon Pk and P̄k. The strength of the loss
term is regulated by the factor σ, while ∠ (p̂u, p̂v, p̂w)k and
∠ (p̄u, p̄v, p̄w)k indicate the angle at the v-th vertex of the
polygon Pk and P̄k, respectively.

Even if the network is encouraged to fix corner angles,
Langle potentially induces unexpected modifications of the
polygon shapes since it leaves some degrees of freedom to
the network on how to warp the vertices. In our experi-
ments the network stretched the polygons in undesired ways
while respecting the angle criterion, potentially producing
misaligned footprints. PolyWorld fixes this issue by min-
imizing a segmentation loss between the ground truth and
predicted polygons. This refinement loss not only inhibits
unwanted effects of Langle, but it also increases segmenta-
tion scores as documented in the next sections.

We generate the footprint mask of the predicted polygons
exploiting a Differentiable Polygon Rendering method [33].
It is the soft version of the winding number algorithm, that
checks whether a pixel location x is inside the polygon Pk

with the equation:

W (x,Pk) =
∑
(u)v)

λ · det(p̂ux, p̂vx)k

1 +
∣∣λ · det(p̂ux, p̂vx)k

∣∣ · ∠ (p̂u, x, p̂v)k

(13)
where (u ) v) are the indices of any two consecutive ver-
tices ofPk, det(·) is the determinant of vectors p̂uq and p̂vq,
and the value λ fixes the smoothness of the raster contours.

Calculating the winding number for every pixel location
in the image, we generate the raster mask Mk ∈ RH×W

of the polygon Pk. The segmentation loss Lseg is finally
calculated as the soft intersection over union [28] between
the ground truth segmentation mask M̄ and the combination
of extracted polygon masks:

Lseg = softIoU

(
K∑

k=1

Mk, M̄

)
(14)

Since the NMS block is not differentiable, the only way
for the network to minimize Lseg and Langle is to generate
a proper set of offsets t for Equation 6.

5. Implementation details

Training and inference: The NMS algorithm extracts
a list of N = 256 vertex positions p with the highest de-
tection confidence. During training, these positions are not
directly used to extract the descriptors d from the features
F , but they are first sorted to match the nearest neighboring
ground truth point. After sorting, pi is the closest vertex to
the ground truth point p̄i. This procedure ensures to have
index consistency between the positions p and the ground

truth permutation matrix P̄ . In reality, the number of ex-
tracted pointsN is always greater than the number of build-
ing corners in the image, therefore the vertices that do not
minimize the distance with any of the ground truth points
have their entry assigned to the diagonal of P̄ . PolyWorld
is trained from scratch linearly combining detection, match-
ing and refinement losses: Ldet +Lmatch +Langle +Lseg .
Rather than learning the matching branch at the early train-
ing stage, we prefer to first pretrain the vertex detection net-
work only using Ldet. When it extracts sufficiently accurate
building corners, we keep training the full PolyWorld archi-
tecture with the complete loss. During inference, vertices
that have their entry in the diagonal of the permutation ma-
trix are discarded (constraint 3 ).

Architecture: As backbone PolyWorld uses a Residual
U-Net model [2]. The descriptor dimension and the inter-
mediate representations of the attentional graph neural net-
work have the same size D = 64. We use L = 4 self
attention layers having 4 parallel heads each. In Equation 6,
we use γ = 0.05, allowing a maximum offset radius of 5%
of the image size. Increasing γ further does not improve the
results. We use ω = 100 in Equation 10, while, in Equa-
tion 13, the value of λ is set to 103 as suggested in [33].
During training, the permutation matrix P is calculated by
performing T = 100 Sinkhorn iterations, whereas during
inference the exact linear sum assignment result is deter-
mined using the Hungarian algorithm on the CPU. With
this configuration a forward pass takes on average 24 ms
per image (320× 320 pixels) on a NVIDIA GTX 3090 and
an AMD Ryzen7 3700X.

6. Experiments

Dataset: Building extraction and polygonization net-
works require ground truth polygonal annotations in order
to be trained. Therefore, we perform all our experiments
using the CrowdAI Mapping Challenge dataset [25], which
is composed of over 280k satellite images of size 300×300
pixels for training and 60k images for testing. In order to
avoid pooling issues in the backbone, we upsample the im-
ages to 320× 320 pixels. The dataset provides the polygon
annotations in MS COCO format [19].

Evaluation metrics: We evaluate and compare the re-
sults of PolyWorld computing classical segmentation and
detection metrics, such as Intersection over Union (IoU),
and MS COCO [19] Average Precision (AP) and Average
Recall (AR). In order to evaluate the regularity of the ex-
tracted building contours, we also calculate the Max Tan-
gent Angle Error [10]. This metric compares the tangent
angles of the predicted and ground truth polygons, penaliz-
ing building contours not aligned with the ground truth.

In general, simple polygonization methods applied to the
raster output of classical segmentation networks produce
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Figure 5. Examples of building extraction and polygonization on CrowdAI test dataset. Top row: Frame Field Learning [10]
approach with Res101-UNet as backbone and ACM polygonization. Bottom row: PolyWorld results.

unregular polygons with a high amount of redundant ver-
tices. On the other hand, building extraction and polygo-
nization methods tend to reduce the segmentation scores
in favour of more regular and realistic footprints. Since
the goal of the proposed method is to generate high qual-
ity building polygons ready to be used on geographical ap-
plications, we introduce the complexity aware IoU (C-IoU)
metric computed as follows:

C-IoU(A, Ā) = IoU(A, Ā) · (1− RD(NA, NĀ)) (15)

where the first term IoU(A, Ā) indicates the intersection
over union between the predicted polygon raster mask A
and the ground truth segmentation Ā. The second term
RD(NA, NĀ) = |NA − NĀ|/(NA + NĀ) is the relative
difference between the number of extracted vertices NA in
the image used to produce the raster A, and the number of
ground truth vertices NĀ. The metric aims to favor poly-
gonizations with a complexity similar to ground truth, pe-
nalizing both oversimplified building shapes and polygons
with redundant vertices. Ideally, a method achieves a high
C-IoU score if it manages to balance the trade off between
segmentation accuracy and polygonization complexity.

Results: Qualitative results of experiments conducted on
the CrowdAI [25] dataset can be observed in Figure 5. The
images represent different kind of urban areas and they are
sorted by building complexity from left to right. We com-
pare the results of PolyWorld with the Frame Field Learn-
ing (FFL) method [10] that represents the state of the art

on building extraction and polygonization. Both FFL and
PolyWorld generalize well in every kind of building, but
PolyWorld produces overall cleaner and more linear geome-
tries without developing undesired artifacts. It is interesting
to note that PolyWorld can better deal with hard object oc-
clusions, estimating the position of the hidden corners and
connecting them producing more regular and realistic foot-
prints, as shown on the left image. The robustness of the
vertex detection and matching process is shown on the right
images, where PolyWorld does not have issues in gener-
ating polygons of complex buildings with curved walls or
inner courtyards. More images can be found in the supple-
mentary material.

In Table 1 we report the MS COCO metrics results us-
ing the test-set of CrowdAI. We computed the scores of
PolyWorld considering and discarding the positional offsets
used to correct the vertex positions (“offset on” and “off-
set off”). Our approach is compared with FFL, PolyMap-
per [16], and two general-purpose instance segmentation
networks: Mask R-CNN [13] and PANet [21]. For the FFL
method, we report the results of the model trained with and
without frame field output, and with different polygoniza-
tion approaches: “mask” is raster segmentation, “simple
poly” refers to the marching squares [22] contour detec-
tor followed by the Douglas–Peucker [9] simplification, and
“ACM poly” refers to the Active Contour Model [10] poly-
gonization. The results of PolyWorld show state-of-the-art
precision and recall performances despite the fact that the
refinement offsets have been ignored. When the vertex po-
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Method AP AP50 AP75 APS APM APL AR AR50 AR75 ARS ARM ARL

Mask R-CNN [13] 41.9 67.5 48.8 12.4 58.1 51.9 47.6 70.8 55.5 18.1 65.2 63.3
PANet [21] 50.7 73.9 62.6 19.8 68.5 65.8 54.4 74.5 65.2 21.8 73.5 75.0
PolyMapper [16] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 88.6 71.4 39.4 75.6 75.4
FFL (no field), mask 57.8 84.0 66.9 33.8 74.1 80.7 67.0 90.4 76.9 46.2 79.7 85.7
FFL (no field), simple poly 61.1 87.4 71.2 35.1 74.5 82.3 64.7 89.4 74.1 41.7 77.9 85.7
FFL (with field), mask 57.7 83.8 66.3 33.8 73.8 81.0 68.1 91.0 77.7 47.5 80.0 86.7
FFL (with field), simple poly 61.7 87.6 71.4 35.7 74.9 83.0 65.4 89.8 74.6 42.5 78.6 85.8
FFL (with field), ACM poly [10] 61.3 87.4 70.6 33.9 75.1 83.1 64.9 89.4 73.9 41.2 78.7 85.9
PolyWorld (offset off) 58.7 86.9 64.5 31.8 80.1 85.9 71.7 92.6 79.9 47.4 85.7 94.0
PolyWorld (offset on) 63.3 88.6 70.5 37.2 83.6 87.7 75.4 93.5 83.1 52.5 88.7 95.2

Table 1. MS COCO [19] results on the CrowdAI test dataset [25] for all the building extraction and polygonization experiments. The
results of PolyWorld are calculated discarding the correction offsets (offset off), and refining the vertex positions (offset on). FFL refers
to the Frame Field Learning [10] method. The results are computed with and without frame field estimation. “mask” refers to the pure
segmentation produced by the model. “simple poly” refers to the Douglas–Peucker polygon simplification [9], and “ACM poly” refers to
the Active Contour Model [10] polygonization method.

Method IoU C-IoU MTA N ratio
FFL (no field), simple poly 83.9 23.6 51.8° 5.96
FFL (with field), simple poly 84.0 30.1 48.2° 2.31
FFL (with field), ACM poly 84.1 73.7 33.5° 1.13
PolyWorld (offset off) 89.9 86.9 35.0° 0.93
PolyWorld (offset on) 91.3 88.2 32.9° 0.93

Table 2. Intersection over union (IoU), mean tangent angle error
(MTA), and complexity aware IoU (C-IoU) results on the test-set
of the CrowdAI dataset [25]. The last column reports the ratio
between the number of detected vertices and the number of ground
truth vertices.

sition refinement is enabled, all the scores improve by a con-
siderable margin, demonstrating the effectiveness of the re-
finement losses. Another interesting fact to mention is that
PolyWorld uses considerably fewer points to describe the
buildings compared to the FFL approach. In the 60k test im-
ages of CrowdAI dataset, the ground truth counts a total of
about 4.4M vertices. PolyWorld extracts 4.2M polygon ver-
tices in the test-set, compared to the 5.1M extracted by FFL
with ACM polygonization. Nevertheless, our approach is
able to achieve better segmentation scores, suggesting that
the PolyWorld vertex extraction is more efficient.

In Table 2 we report the intersection over union, mean
tangent angle error, and complexity aware IoU results.
Again, there is a noticeable improvement in all the metrics
exploiting the vertex position refinement. Even though the
ACM polygonization of FFL significantly outperforms the
Douglas–Peucker polygonization in terms of MTA and C-
IoU, the full PolyWorld method manages to overtake all the
FFL results.

7. Limitations and future work

In our future work we want to demonstrate the capability
of PolyWorld to generalize and produce accurate polygons

on large scale data sets with a number of unseen conditions.
This will include the Inria segmentation dataset [23] with
Open Street Map annotations since it contains varied areas
captured from different cities around the globe, and includes
adjacent buildings with common corners. From a technical
point of view, the case of common corners could be effi-
ciently solved using PolyWorld by generalizing the vertex
detection network to multiclass segmentation, detecting the
number of vertices located in the same position, and sam-
pling the visual descriptor multiple times from the feature
map if a shared corner is detected. Another limitation of
PolyWorld concerns buildings with holes. Since the permu-
tation matrix does not carry the information to bind outer
and inner rings to the same shape, a post processing step
might be required to generate multi-polygons.

8. Conclusion
We presented PolyWorld, a novel method capable of

elegantly extracting building polygons from satellite and
aerial images in an end-to-end manner. The evaluation re-
sults experimentally prove the power and effectiveness of
self-attention graph neural networks for matching and posi-
tional refinement of detected building vertices. By solving
an optimal transport problem, our method provides strong
and reliable vertex connections and implicitly avoids redun-
dant points. Our experiments show that PolyWorld signifi-
cantly outperforms existing building extraction approaches,
enabling highly accurate and regular building footprints,
which fulfill the strict requirements of geographic and car-
tographic applications.
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ical map extraction from overhead images. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 1715–1724, 2019. 2, 7, 8

[17] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen
Xiong, Rui Hu, and Raquel Urtasun. Polytransform: Deep
polygon transformer for instance segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9131–9140, 2020. 2

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6, 8

[20] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja
Fidler. Fast interactive object annotation with curve-gcn. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5257–5266, 2019. 2

[21] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 2, 7, 8

[22] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 7

[23] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat,
and Pierre Alliez. Can semantic labeling methods generalize
to any city? the inria aerial image labeling benchmark. In
IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS). IEEE, 2017. 8

[24] Diego Marcos, Devis Tuia, Benjamin Kellenberger, Lisa
Zhang, Min Bai, Renjie Liao, and Raquel Urtasun. Learn-
ing deep structured active contours end-to-end. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8877–8885, 2018. 2

[25] S. P. Mohanty. CrowdAI mapping challenge 2018
dataset, 2019 (accessed November 10, 2019). https:
//www.crowdai.org/challenges/mapping-
challenge. 6, 7, 8

1856



[26] James Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the society for industrial and
applied mathematics, 5(1):32–38, 1957. 5
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