
Interaktive Visualisierung von
Vektordaten auf Höhenfeldern

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Visual Computing

eingereicht von

Silvana Zechmeister, BSc
Matrikelnummer 01327455

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Daniel Cornel

Wien, 13. Oktober 2020
Silvana Zechmeister Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Interactive Visualization of Vector
Data on Heightfields

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Visual Computing

by

Silvana Zechmeister, BSc
Registration Number 01327455

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Daniel Cornel

Vienna, 13th October, 2020
Silvana Zechmeister Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Silvana Zechmeister, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. Oktober 2020
Silvana Zechmeister

v

Danksagung

An dieser Stelle möchte ich mich bei allen Menschen in meinem Leben bedanken, die mich
während meiner Studienzeit begleitet und diese zu einer unvergesslichen Zeit gemacht
haben. Der Austausch und die gemeinsamen Projekte mit meinen Mitstudierenden haben
mir immer viel bedeutet, besonders mit Klara und Michaela in der Endphase, in der wir
uns auch gegenseitig motiviert und geholfen haben unser Studium abzuschließen. Meinen
Freund Johannes möchte ich besonders hervorheben, der mich immer unterstützt und
mich in sehr harten Zeiten mit Schokolade versorgt hat. Ein großes Dankeschön geht
auch an meine Familie, die mich immer darin bestärkt hat, weiterzumachen und mich
mit der Frage über den Zeitpunkt meines Studienabschlusses angetrieben hat.

Ich möchte mich auch bei meinem Betreuer Eduard Gröller für die Beantwortung all meiner
Fragen und für das wertvolle Feedback zu dieser Arbeit bedanken. Des Weiteren möchte
ich der Integrated Simulations Group des VRVis für das unterstützende Arbeitsumfeld
danken und ein besonderes Dankeschön geht dabei an Daniel Cornel, der sein Fachwissen
mit mir geteilt und sich immer die Zeit genommen hat, mich von der Anfangsphase über
die konkrete Umsetzung bis zur endgültigen Fertigstellung der Arbeit, zu unterstützen.

Danke euch allen!

Diese Diplomarbeit wurde durch das Kompetenzzentrum VRVis ermöglicht. Die VRVis
Forschungs-GmbH wird im Rahmen von COMET – Competence Centers for Excellent
Technologies (854174) durch BMK, BMDW, Land Steiermark, Steirische Wirtschaftsför-
derung – SFG und Wirtschaftsagentur Wien – Ein Fonds der Stadt Wien gefördert. Das
Programm COMET wird durch die FFG abgewickelt.

vii

Acknowledgements

At this point, I would like to thank all the people in my life who accompanied me during
my studies and made it an unforgettable time. The exchange and joint projects with
my fellow students have always meant a lot to me, especially with Klara and Michaela
in the final phase, in which we also motivated and helped each other to complete our
studies. I want especially emphasize my boyfriend Johannes, who always supported me
and provided me with chocolate in very hard times. A big “thank you” also goes to my
family, who always encouraged me to continue and pushed me with the question about
the time of my graduation.

I would also like to thank my supervisor Eduard Gröller for answering all my questions
and for the valuable feedback on this work. Furthermore, I want to thank the Integrated
Simulations Group of VRVis for the supportive working environment and a special thanks
goes to Daniel Cornel, who shared his expertise with me and always took the time
to support me, from the initial phase over the concrete implementation to the final
completion of the thesis.

Thank you all!

This thesis was enabled by the Competence Centre VRVis. VRVis is funded by BMK,
BMDW, Styria, SFG and Vienna Business Agency in the scope of COMET - Competence
Centers for Excellent Technologies (854174) which is managed by FFG.

ix

Kurzfassung

Die präzise Visualisierung großer Mengen georeferenzierter Vektordaten auf Höhenfeldern
in Echtzeit ist ein häufiges Problem im Bereich von geographischen Informationssystemen
(GIS). Vektordaten bestehen in der Regel aus Linien und Polygonen, die Objekte wie
Straßen, Flüsse, Gebäude und Parks darstellen. Die interaktive Erkundung dieser Vektor-
objekte in weitläufigen virtuellen 3D Umgebungen und der daraus resultierende große
Zoombereich stellen eine zusätzliche Leistungsherausforderung für deren Visualisierung
dar. In solch weitläufigen Umgebungen ist es schwierig, eine klare Sichtbarkeit aller Ob-
jekte von Interesse sowohl in der Gesamtübersicht als auch ihrer Details in Nahansichten
zu gewährleisten.

In dieser Arbeit wird eine bildschirmbasierte Visualisierungsmethode für Vektordaten
vorgestellt, die zwei verschiedene Ansätze kombiniert, einen statischen und einen dynami-
schen Ansatz, um das Verhalten und die Sichtbarkeit der entsprechenden Vektorobjekte
kontrollieren zu können. Die Vektordaten können Objekte aus der realen Welt darstellen,
und um ihre relative Größe zum Rest der 3D Szene zu erhalten, wird für den statischen
Ansatz eine konstante Objektgröße verwendet. Dieses statische Verhalten kann jedoch
dazu führen, dass Vektorobjekte beim Herauszoomen verschwinden. Da Linien aufgrund
ihrer geringen Breite besonders betroffen sind, werden sie beim dynamischen Ansatz
entsprechend der aktuellen Ansicht skaliert, um auch aus der Ferne gut sichtbar zu sein.

Die Evaluierungsergebnisse zeigen, dass beide bildschirmbasierten Visualisierungsansätze
in realen Anwendungsfällen eines raumbezogenen Entscheidungsunterstützungssystems
mit weitläufigen Umgebungen und Vektordaten, die aus mehreren Millionen von Eckpunk-
ten bestehen, angewendet werden können und dennoch eine Echtzeitleistung bieten. Die
Ergebnisse zeigen auch, dass die vorgeschlagene bildschirmbasierte Visualisierungsmetho-
de im Vergleich zu einer volumenbasierten Visualisierung einen größeren Render-Overhead
erzeugt, aber bei großen Vektordatensätzen die neue Methode diese übertrifft.

xi

Abstract

The accurate visualization of huge amounts of georeferenced vector data on heightfields
in real-time is a common problem in the field of geographic information systems (GIS).
Vector data usually consist of lines and polygons, which represent objects such as roads,
rivers, buildings, and parks. The interactive exploration of these vector entities in large-
scale virtual 3D environments and the resulting large zoom range pose an additional
performance challenge for their visualization. Ensuring clear visibility of all objects of
interest in overview and of their details in close-up views is difficult in such large-scale
environments.

In this thesis, a screen-based visualization method of vector data is proposed, which
combines two different approaches, a static and a dynamic approach, to control the
behavior and the visibility of the corresponding vector entities. The vector data can
represent real-world objects and to preserve their relative size to the rest of the 3D world,
a constant object size is used for the static approach. But, this static behavior can cause
vector entities to disappear when zooming out. Since lines are especially affected due to
their small width, the dynamic approach scales them according to the current view in
order to be clearly visible even from far away.

The evaluation results show that both screen-based visualization approaches can be
applied in real-world use cases of a geospatial decision support system with large-scale
environments and vector data consisting of several millions of vertices and still provide real-
time performance. The results also highlight that the proposed screen-based visualization
method produces larger render overheads compared with a volume-based visualization,
but for large vector data sets, the new method outperforms it.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Question . 3
1.4 Contributions . 4
1.5 Structure of the Thesis . 4

2 Related Work 5
2.1 Terminology . 5
2.2 Texture-Based Techniques . 6
2.3 Geometry-Based Techniques . 8
2.4 Volume-Based Techniques . 10
2.5 Screen-Based Techniques . 12
2.6 Anti-Aliasing . 15
2.7 Line Simplification . 17
2.8 Styling Techniques . 18

3 Visualization Process 19
3.1 Decal Types . 19
3.2 Preprocessing . 22
3.3 Dynamic Update . 27
3.4 Rendering . 33
3.5 Anti-Aliasing . 36
3.6 Line Styles . 37

4 Implementation Details 41

xv

4.1 Input Data . 41
4.2 Preprocessing . 43
4.3 Dynamic Update . 52
4.4 Rendering . 60
4.5 Anti-Aliasing . 66

5 Evaluation 69
5.1 Case Studies . 69
5.2 Results & Discussion . 77
5.3 Conclusion . 97

6 Summary 101

Bibliography 103

Acronyms

AABB axis-aligned bounding box 22, 34, 43, 46, 47, 49, 50, 61, 62, 65

BVH bounding volume hierarchy 13, 14, 22–25, 34, 36, 43, 44, 49, 50, 52, 60–62, 64, 65,
80–82, 84, 87, 89, 92, 93, 97, 100, 102

CPU Central Processing Unit 41–43, 45–47, 49, 51, 52, 56, 80, 81, 89

FOV field of view 54

FXAA fast approximate anti-aliasing 17, 37, 66, 85, 87, 97

GB Gigabyte 78, 79

GHz Gigahertz 79

GIS geographic information systems 1, 3, 5–8, 23

GPU Graphics Processing Unit 41–43, 50–52, 78–83, 86, 88–94, 96–100, 102

HORA Natural Hazard Overview & Risk Assessment Austria 71, 73

LOD level of detail 7, 8, 17

MB Megabyte 93

min minute 78

MLAA morphological anti-aliasing 17

ms millisecond 78, 85, 87, 93, 95

MSAA multi-sampling anti-aliasing 15, 36, 37, 66, 79, 85, 87, 99, 102

RAM Random-Access Memory 79

SSAA super-sampling anti-aliasing 15, 66, 85

xvii

STL Standard Template Library 49

TAA temporal anti-aliasing 17

CHAPTER 1
Introduction

1.1 Motivation

Natural disasters cause a lot of damage and can hardly be controlled, so it is desirable
to be prepared as well as possible for these unavoidable events. Floods are the natural
disaster that involves the most people worldwide and affects more than two billion
people [WH18]. In addition to the danger flood disasters pose to people, they also lead
to high costs and an economic loss of US $ 656 billion. One way to be better prepared for
such disasters is the use of decision support systems for flood management [KJ19]. These
systems enable the analysis of diverse crisis scenarios and the computation of possible
outcomes with different measures. This way broad evaluations can be made in advance,
which should make it easier for flood managers to make reasonable decisions and better
prepare for a real disaster situation.

The visualization of spatial data is important for flood management to communicate
location-relevant information, such as the positions of flooded areas and their proximity
to buildings and roads to identify and locate potential risk areas. There are different
types of spatial data that are important in this context, the general and the domain-
specific geographical data and data provided by engineers to define, for example, building
footprints or protection walls. The general geographical data describe the landscape, for
example with land use data and the infrastructure, with road, rail and sewer networks.
The domain-specific geographical data include flood and catchment areas to support visual
analysis for flood management. In the field of geographic information systems (GIS) all
these different data types are commonly stored and provided by vector data, which describe
spatial objects by using two-dimensional points, lines, and polygons [SZT+16, TBP17].

There is a shift from 2D virtual environments towards 3D and one reason for this is the
omnipresence of 3D scenes in games and other media [Pre15]. This trend is also noticeable
in the GIS sector, where traditional 2D landscape representations are sometimes replaced

1

1. Introduction

Figure 1.1: Visualization of various vector data representing land use, building footprints,
roads and water bodies in Cologne.

or extended by 3D representations. An advantage of 3D scenes is that they are more
realistic and therefore it is intuitively understandable even for non-domain experts when
georeferenced data are displayed in their natural 3D shape. Furthermore, the user study
of Leskens et al. [LKT+17] shows the importance of the third dimension, especially in
the field of flood analysis. This is because the impact of flood hazards can also be shown
from the side and the water height and its damage can be directly visualized. Compared
to 2D visualizations where these data are displayed with abstract color coding, the direct
3D visualizations allow the user to interpret flooded scenes intuitively. The participants
of their user study were able to better understand the consequences of a flood in terms
of damages, loss of life, and the urgency to evacuate.

The downside of using the third dimension is that occlusions and perspective distortions
can occur. Furthermore, the navigation through a 3D virtual world is more complex than
in 2D. The additional dimension also introduces a conflict between the 2D vector data
and the 3D scene and a mapping from the vector data onto the underlying terrain is
necessary to resolve it. Previous research led to different mapping approaches, which have
their limitations when it comes to visualizing vector data for dynamic flood management
systems. This thesis tries to overcome these limitations and focuses on the optimization
of vector data visualization in the context of the geospatial decision support system for
flood management called Visdom [vis]. In Figure 1.1 a scene in Visdom is shown where
vector data are used to visualize land use, building footprints, roads, and water bodies of
Cologne.

2

1.2. Problem Statement

1.2 Problem Statement

There are different challenges that come with the visualization of geospatial big data
for decision support systems. Despite the large amount of data, interactivity should
be provided to enable the user to effectively direct the system and explore different
scenarios from variable views. To accomplish this interactive behavior, a highly flexible
visualization of vector data that is suitable for different perspectives and zoom levels
is necessary. This interactivity combined with a large-scale environment can make the
visualization of large amounts of vector data a performance bottleneck.

A way to reduce the complexity of vector data are simplification algorithms, which
eliminate unnecessary geometric detail. Line simplification has a particularly important
role to reduce the geometric complexity of vector data and thus accelerate the visualization
process. The challenge is that the simplification needs to reduce the size of vector data
while it should preserve the visual impression of the original data. This means that
for lines further away more data can be reduced without noticeable changes in their
appearance, while near lines need more details and less simplification can be applied.
To do so, the simplification process has to dynamically adapt to different views. This
dynamic simplification process is not trivial in real time, which leads to a lack of these
techniques that provide both efficiency and accuracy.

The three-dimensionality, which is beneficial for flood analysis also complicates a fast
visualization. The advantage of an intuitive interpretation and an improved spatial
impression of a scene, comes along with occlusions, perspective distortions, and a
generally higher complexity due to the additional dimension. Furthermore, it introduces
a dimensional conflict between 2D vector data and the 3D environment. To integrate
the vector data they have to be mapped onto the heightfield of their underlying terrain.
Existing techniques have problems if they are used to map large amounts of vector data in
dynamic real-time applications with wide scenes. The limitations include the occurrence
of visual artifacts and the need to generate additional geometries and complex data
structures, which costs time and memory. The techniques also have limited flexibility,
as some are only designed for specific use cases and they are not intended for use in
applications with vector entities that are interactively manipulated and dynamically
changing. One application for dynamically changing vector entities are large-scale
environments that cause objects far away to disappear, even if they are important and
the user wants to interact with them. A dynamic scaling of the vector entities according
to the current view would be desirable in such cases, to be able to perceive them at every
distance.

1.3 Research Question

This thesis tries to answer the question of the feasibility of visualizing vector data under
challenging conditions required for interactive GIS applications. The main question is how
to display a million of partially dynamic lines and polygons integrated into a large-scale

3

1. Introduction

3D environment in real time with pixel accuracy and without visual artifacts. To answer
this question, different optimization algorithms for line and polygon visualization need to
be applied and analyzed for their speed and accuracy. In this way it should be determined
whether both a real-time performance and a high accuracy can be achieved at the same
time.

1.4 Contributions
In this thesis a new vector data visualization method is introduced that provides interac-
tivity even for large amounts of vector data that are visualized in large-scale environments.
Line and polygon data can be rendered with interactive frame rates in challenging use
cases while providing pixel accuracy. The feasibility and efficiency is proven by case
studies, where vector data are visualized in real world use cases. The proposed method
provides two ways to render vector lines, a static and a dynamic variant, which have
both their strengths and limitations. Static lines are fast and memory-efficient, but
there are applications where a dynamic scaling of lines to remain visible has a higher
priority. Depending on the application, a different line type can be chosen to obtain line
visualizations that meet individual requirements. Additionally, different polygon and line
styles offer the possibility to change the data representation to highlight and differentiate
vector entities.

1.5 Structure of the Thesis
The work related to this thesis and domain-specific terminology are discussed in the next
Chapter 2, Related Work. Then the whole process of visualizing vector data, from the data
input to the final display of different decal types is described in Chapter 3, Visualization
Process. The following Chapter 4, Implementation Details, covers details of the concrete
implementation and limitations of the two screen-based visualization approaches for static
decals and dynamic lines. Afterwards, the strengths and weaknesses of the proposed
visualization method are analyzed in real-world use cases of a flood management system
and compared with a volume-based visualization technique. In Chapter 5, Evaluation,
also the results of performance tests on time and memory consumption are presented
and different influence factors are discussed. The final Chapter 6, Summary, concludes
the thesis by summarizing the main contributions of the thesis and giving an overview of
open topics for future work.

4

CHAPTER 2
Related Work

The chapter covers the work that is related to this thesis and addresses different aspects
that are relevant to visualize vector data. In order to get clarity in the use of different
terms, domain-specific terminology is discussed first. Different vector data visualization
techniques that map 2D vector data onto 3D geometry are introduced afterwards. These
techniques can be divided into four main categories, i.e., texture-based, geometry-based,
volume-based, and screen-based techniques, which are covered in the respective sections.
They are followed by a short overview of different anti-aliasing methods to prevent visual
artifacts on the displayed vector data. Afterwards, existing algorithms to reduce the
data complexity by simplifying lines are discussed. The last section of this chapter covers
common styling methods used to visualize vector data.

2.1 Terminology
There are different naming schemes in the field of computer graphics and GIS. The
projection of 2D structures onto 3D surfaces is usually called decal rendering or decal-
ing in computer graphics literature because the process is like attaching a decal to a
surface [AHH+18]. Decals can represent versatile things and therefore they are used
in different application areas. In computer graphics decal rendering is known as the
projection of a 2D decal texture onto 3D surfaces to represent fine structures, such as
eyes, fur, and skin structures as shown in Figure 2.1 [DWB+13].

Decal rendering is also known under the synonym draping in the area of GIS and, as one
can see in Figure 2.2, it is used to highlight road networks, rivers, and building footprints
for instance [TD19]. In this field, the applied 2D structures are usually described by
vector data instead of textures and they can have different shapes, which are not limited
to rectangles like textures are. In this thesis decals are consistently defined by vector
data and therefore in the next section only visualization techniques using vector data as
input are discussed.

5

2. Related Work

Figure 2.1: Decals based on 2D textures used to apply eyes and different surface structures
for skin and fur.

Image source: Groot et al. [DWB+13]

Figure 2.2: Decals based on 2D vector data and used in GIS for representing road
networks, rivers, and building footprints on virtual terrains.

Image source: Frasson et al. [FEP18]

2.2 Texture-Based Techniques

For texture-based techniques, textures are generated to represent the given vector-data.
Therefore, the vector data are rasterized at a given resolution and stored in a 2D texture
beforehand. After rendering the terrain in an offscreen buffer, the decal texture is projected
onto it and the result is displayed [AHH+18]. Figure 2.3 illustrates this process and shows

6

2.2. Texture-Based Techniques

Figure 2.3: The texture mapping principle used to apply 2D decal textures on 3D surfaces.
Image source: Akenine et al. [AHH+18]

Figure 2.4: Projective distortion on a steep slope (left) and perspective aliasing near the
virtual camera (right) are artifacts produced by the texture-based technique.

Image source: Thöny et al. [TBP17]

opportunities for accelerated decal rendering by skipping fully transparent, backfacing, or
occluded decals. Through graphics hardware support for texture mapping the approach
is fast and easy to implement [SGK05]. A further advantage is the independence of the
decals from the underlying geometry. This independence property of decals is especially
advantageous in combination with level of detail (LOD) terrain rendering because the
dynamically changing terrain geometry does not affect the decals [TD19].

The negative sides of texture-based techniques are that they suffer from projective distor-
tions on steep slopes and perspective aliasing artifacts caused by insufficient resolution
near the viewer. Examples of these artifacts can be seen in Figure 2.4 left and right,
respectively. To provide appropriate texture resolutions, the vector data can be rasterized
in different resolutions to generate a multi-resolution texture pyramid in a preprocessing
step [WLB09]. In GIS high flexibility for dynamic user interaction is expected, but this

7

2. Related Work

static approach does not support an individual selection, highlighting or manipulation of
decals [WKW+03]. Zhi et al. [ZGW+13] avoid the early rasterization of vector data and
propose a dynamic texture generation on-demand. That way decals can be dynamically
changed and visualized based on the user’s needs. This dynamic method is less memory
intensive than the static pyramid approach and it can be used to create view-dependent
resolutions of textures to reduce perspective aliasing artifacts [SGK05]. Nevertheless, the
dynamic updates can be time-consuming and hamper dynamic user interaction.

2.3 Geometry-Based Techniques

The geometry-based techniques subdivide the given vector data based on intersections
with the underlying terrain mesh and insert additional vertices. The vertices and the
terrain’s height information are used to generate 3D geometry-overlays as shown in
Figure 2.5 [DXZS13]. These approaches do not scale well with respect to the size and
complexity of their corresponding terrain. The number of generated primitives grows
with the terrain complexity and is getting high even if the initial vector entities are very
simple [SK07].

One advantage over texture-based approaches is that no aliasing or distortion artifacts
are created, which is at the cost of independence. The approach is highly dependent
on the terrain geometry and the geometry-overlays need to dynamically adapt to the
terrain’s LOD to avoid artifacts such as z-fighting caused by geometry inconsistencies.
For a fast terrain matching Schneider et al. [SGK05] and Qiao et al. [QWS+11] generate
multi-resolution geometry overlays based on the terrain’s LODs in a preprocessing
step. This static data structure provides a direct mapping from terrain LOD to the
corresponding decal geometry during runtime, but at the expense of memory consumption
and interactive manipulation of decals. Furthermore, the approach is only suitable for
terrain rendering with predefined LODs. Sun et al. [SLL08] limited the application
of their method to static terrain meshes to avoid geometry changes and to support
interactive manipulation, which includes vertex editing, moving, rotating, or resizing
of decals. Since the typically large-scale terrains in GIS need efficient LOD rendering
techniques for real-time display, the approach is hardly applicable in this area.

To provide a more flexible and dynamic geometry-based technique, Deng et al. [DXZS13]
organize the terrain geometry and the vector data with the same quad-tree data structure.
The quad-tree makes it possible to skip terrain mesh quads without vector data early in
the rendering process. Otherwise, the tree delivers the quad storing the terrain mesh
used to produce the tailored decal mesh. They use parallel computing to accelerate the
on-demand geometry matching and make it run in real time. But, their per-fragment
intersection tests between terrain and decals produce wrong results at the terrain’s
silhouettes. It leads to a roofing effect with lines drawn along silhouettes in cases where
they should lie behind, as shown in Figure 2.6 (left). Ohlarik and Cozzi [OC11] handle
this problem by detecting and omitting the silhouette fragments and rendering them
with a volume-based technique instead. The resulting line in Figure 2.6 (right) is then

8

2.3. Geometry-Based Techniques

Figure 2.5: Geometry-overlay generation in side view and top-down view: The initial
line and it’s corresponding terrain mesh (left) and the subdivided line with additional
vertices (right).

Image source: Thöny et al. [TBP17]

Figure 2.6: Geometry-based line visualization proposed by Ohlarik and Cozzi [OC11]
without consideration of the terrain’s silhouettes (left) and with (right).

Image source: Ohlarik and Cozzi [OC11]

displayed correctly, but at the cost of runtime caused by the additional render pass.

Another geometry-based technique is proposed by Vaaraniemi et al. [VTW11], which uses
only the center lines for the geometry matching between vector lines and terrain. The
procedure reduces the computational effort, which speeds up the matching process and
facilitates dynamic line changes. This opportunity is used for a view-dependent scaling of
lines to enhance their visibility in large-scale environments. Since the lines are matched
only by their center lines, the runtime width scaling algorithm for lines may lead to

9

2. Related Work

Figure 2.7: A geometry-based technique, using only center lines, causes the vector lines
to disappear into the terrain (left). A volume-based technique (middle) prevents this
error and is independent of the underlying terrain geometry (right).

Image source: Vaaraniemi et al. [VTW11]

errors on non-planar terrains, because through the scaling they can intersect the terrain
and partially disappear. In Figure 2.7 one can see such an error case compared with a
volume-based approach. Vaaraniemi et al. [VTW11] implemented also a volume-based
variant of the view-dependent line scaling without lines disappearing into the terrain.
But, their volume-based approach leads to performance issues for wide scenes and high
numbers of scaled vector lines.

2.4 Volume-Based Techniques

Schneider and Klein [SK07] introduced the decal rendering technique based on a stencil
shadow volume algorithm, initially used to render shadows [AHH+18]. Therefore, these
techniques are often referred to as shadow-volume-based approaches, although they have
nothing to do with shadows. The general procedure can be divided into three parts:
polyhedra construction, stencil buffer mask generation, and mask application. During
the first step, a 3D geometric representation is created by a vertical extrusion of the
2D vector data, which can be done during preprocessing for static vector data. Figure 2.8
shows the polyhedra construction for a blue line with vertices A, B, C and D in side view.
The vertices are replicated and shifted to the side according to the line width and above
and below the terrain surface to form the extruded 3D geometry. The obtained geometry
is then rendered into a stencil buffer by counting the front and back faces to create a
decal-terrain intersection mask. Finally, the mask is applied to the scene by coloring
pixels accordingly.

The extrusion step leads to a higher primitive count, which can affect rendering effi-
ciency and leads to more expensive geometry updates for dynamically changing vector
maps [XSWJ10]. But, these screen-space techniques provide pixel-accurate decal render-

10

2.4. Volume-Based Techniques

Figure 2.8: Polyhedron generation for volume-based approaches: The blue line is extruded
to create the red polyhedron, which intersects the black terrain surface only vertically at
the line endpoints A and D.

Image source: Dai et al. [DZY08]

Figure 2.9: Rendering a narrow red line with a volume-based approach leads to dashing
artifacts (left) and rendered with a screen-based approach without artifacts (right).

Image source: Ohlarik and Cozzi [OC11]

ing without resolution artifacts as they occur with texture-based approaches. Another
advantage of this method is the easy integration into any terrain rendering system caused
by the independence of the underlying terrain geometry. Furthermore, the performance
depends only on the complexity of the vector data instead of the terrain complexity, as
is the case with geometry-based methods [SK07].

The benefits come with higher rendering costs, because there are multiple render passes
necessary. After the mask creation, decals can no longer be distinguished from each other
and all masked pixels get the same color and transparency. Therefore, decals can only
be differentiated if they are grouped by their style and rendered separately. Another
drawback of volume-based approaches is that large parts of the screen may be covered by
the extruded geometry, which produces a massive overdraw [TBP17]. Visual artifacts can
appear in special cases, such as at steep slopes, where the decals are distorted, similar
to texture-based techniques [SK07]. Another problem case mentioned by Ohlarik and
Cozzi [OC11] are thin lines viewed lengthwise, which can lead to dashing, as at the red

11

2. Related Work

Figure 2.10: For the screen-based technique of She et al. [SZT+16] each pixel is inversely
projected to world space by using the height information of a virtual terrain. The
resulting pixel quadrilateral is then tested for intersections with the vector data.

Image source: She et al. [SZT+16]

line in Figure 2.9 (left) [OC11]. They use a screen-space approach with vertical walls
instead of polyhedra to render the same line without dashing artifacts, as shown in
Figure 2.9 (right).

2.5 Screen-Based Techniques

The latest and most promising techniques are the screen-based approaches because they
overcome limitations of previous methods, such as static map properties, high terrain
dependency, and additional geometry generation. That is the reason why this thesis is
based on screen-based techniques. These techniques operate on a per-pixel basis for a
direct mapping of the given vector data to corresponding pixels without transforming the
data into an intermediate representation, such as rasterized textures, geometry-overlays,
or shadow volumes [TBP16].

In Figure 2.10 the basic concept of the screen-based approach of She et al. [SZT+16]
is illustrated. Each pixel is inversely projected to world space by using the height
information of the terrain. In world space the pixels are tested for intersections with
vector data. In case of a hit the pixel is colored according to its intersecting decal. This
pixel-precise rendering does not suffer from resolution artifacts such as texture mapping
and also prevents artifacts such as z-fighting and dashing. To avoid that for every pixel

12

2.5. Screen-Based Techniques

Figure 2.11: Spatial data structures used for the screen-based decal rendering technique
of Frasson et al. [FEP18]: (a) A regular grid for spatial indexing of lines and polygons.
Per grid cell two bounding volume hierarchys (BVHs) for (b) lines and (c) polygons are
stored. (d) Polygons are further organized in quad-trees and stored in the leaf nodes of
their BVH.

Image source: Frasson et al. [FEP18]

all lines have to be tested for intersection, Thöny et al. [TBP17] accelerate the line search
by using spatial data structures constructed during preprocessing. All line segments are
assigned to a regular grid as shown in Figure 2.11a. A segment is added to a grid cell
if it intersects a cell after adding the corresponding line width. Thus, a line segment is
stored at least in one cell but it can be assigned to several cells. To avoid testing many
segments per cell, their number should be as small as possible by using a fine grid. Since
the memory consumption grows with the grid resolution, it is limited to the available
memory and a grid size of 256 × 256 cells is proposed by Thöny et al. [TBP17]. To
keep the per-pixel computation cost low, the line segments are further stored in a fully
balanced binary BVH per grid cell, which is sorted according to a space-filling curve (see
Figure 2.11b). After this preprocessing step each inversely projected pixel can be located
inside the regular grid and the corresponding BVH is traversed by testing if the pixel’s
distance to a leaf node segment is smaller than half the line width. The pixel color can
then be composited according to all detected line segments.

The approach of Thöny et al. [TBP17] is developed for lines only, therefore Fras-
son et al. [FEP18] extended it to be able to render more complex shapes with polygons
as well. They store polygons in quad-trees to achieve fast pixel-in-polygon tests. The
tree is build during preprocessing by splitting a quad until only few polygon segments
are left to be stored in a leaf node. As shown in Figure 2.12a, the leaf node segments

13

2. Related Work

(a) (b)

Figure 2.12: (a) Leaf nodes of a polygon quad-tree categorized in fully-in (green), fully-out
(yellow) and partial nodes (gray). For point-in-polygon tests per partial node, additional
segments (red) are added to close the small leaf polygons. (b) The quad-tree culling
process, where the smallest sub-tree that contributes to a grid cell is detected.

Image source: Frasson et al. [FEP18]

(dark gray) are then used to create small leaf node polygons closed on the quad borders
with additional segments (red). The resulting quad-tree then consists of three types of
nodes, the fully-in, fully-out and partial nodes, which are the green, yellow and light gray
nodes, respectively. The created polygon quad-trees are then stored in intersecting cells
organized in BVHs the same as line segments are. The data preparation with a regular
grid for lines and polygons and a separation of the data into different per-cell BVH can
be seen in Figure 2.11. For decal rendering the polygon quad-trees can be efficiently
traversed with point-in-rectangle tests between pixels and quad boundaries until a leaf
node is reached. To avoid the traversal of whole quad-trees in cases where only a sub-tree
contributes to a cell of the regular gird, the root node of this sub-tree is stored per cell.
Through this process, called quad-tree culling by Frasson et al. [FEP18], the traversal
of polygon quad-trees can be limited to relevant sub-trees only. Figure 2.12b visualizes
the quad-tree culling process with a quad-tree covering only a small part of a hash cell,
which is a cell of the regular grid. If fully-in or fully-out leaf nodes are reached, the
contribution of the polygon to a pixel can be determined immediately. For partial leaf
nodes a point-in-polygon test has to be executed with the pixel and the prestored leaf
polygon.

Spatial search structures, such as those used by Thöny et al. [TBP17] and Frasson et al. [FEP18],
accelerate decal rendering but also limit the flexibility. The static structures are not suit-

14

2.6. Anti-Aliasing

Figure 2.13: A screen-based technique which uses the initial vector lines (left) and their
width to generate polygons (second left) and distance field textures per segment (third
left). The textures are then used to composite the final decal color (right).

Image source: Trapp et al. [TSD15]

able for decals that are dynamically changing, because it would lead to time consuming
updates of the spatial data structures during runtime. The motivation of the use of these
static structures is to limit the intersection tests of a pixel to decals nearby, instead of
testing against all decals, which quickly becomes inefficient with an increasing number of
decals. Trapp et al. [TSD15] propose a more flexible method without using such static
structures, which provides view-adaptive rendering of lines, interactive filtering, and
highlighting. Therefore, they generate a polygon per line segment by using its width and
store a distance field texture per polygon, as shown in Figure 2.13. The pixel color is
then composited by using all distance field textures at the pixel location. Thus, only
decals contributing to a pixel are processed but the disadvantage of this screen-based
technique is that it is limited to planar terrains.

2.6 Anti-Aliasing

The rasterization of decals can lead to aliasing artifacts in the form of jagged edges, as
shown in Figure 2.14(left) [AHH+18]. Different anti-aliasing techniques exist to avoid

15

2. Related Work

Figure 2.14: Three levels of anti-aliasing of a triangle, a line and points (top) and their
magnifications (bottom). Without anti-aliasing by using only one sample (left) and
anti-aliasing with four samples (middle) and eight samples (right).

Image source: Akenine et al. [AHH+18]

staircase effects. To get smoother edges super-sampling anti-aliasing (SSAA) and multi-
sampling anti-aliasing (MSAA) use multiple samples per pixel and use this gathered
information to adjust the pixel color. MSAA is an optimization of SSAA, which does not
process all samples. It detects pixels at edges, where anti-aliasing occurs and processes
the samples only if necessary. In Figure 2.14 the anti-aliased result with four (middle) and
eight (right) samples can be seen. These anti-aliasing techniques have a high memory and
bandwidth consumption because multiple samples have to be processed and combined
per pixel [CR12].

One way to reduce the anti-aliasing costs is by using analytical methods, such as the
prefiltering method proposed by McNamara et al. [MMJ00]. The analytical anti-aliasing
concept for lines is based on the distance of a pixel to the center of a line segment and a
filter used to smooth the pixel color according to this distance. The radius of the filter
should relate to the pixel size to avoid too blurry or too jagged edges [Rou13]. While
this information is implicitly given if operating in screen space, for lines embedded into a
3D environment it is not [SLLW18]. Thöny et al. [TBP17] use an analytical anti-aliasing
approach for their vector lines, which is based on the estimation of the pixel’s coverage.
The estimated coverage is used to compute a blending factor applied to the corresponding
pixel. Their approach is suitable for lines but can become computationally expensive
for polygons [FEP18]. Lines with outlines or with glyphs inside, consist of different
colors and therefore need anti-aliasing also inside. She et al. [SLLW18] process the edges

16

2.7. Line Simplification

individually to determine the resampling region. This region is used to apply a color
resampling operation based on Hermite spline interpolation for a smooth transition of
colors.

With an image-based anti-aliasing filter, decals can be rendered aliased and filtered
afterwards to reduce aliasing artifacts. The anti-aliasing as a post-process is memory-
efficient and has low computational cost [CR12]. The idea of morphological anti-aliasing
(MLAA) is to detect and smooth only stair-stepped patterns to avoid unnecessary blurring
of the scene. A similar technique as MLAA is fast approximate anti-aliasing (FXAA) [fxa],
which is optimized and developed by Nvidia. It is fast and easy to integrate in different
applications because it relies only on color input and does not need additional information,
such as depth and normals [Gre19].

The anti-aliasing filter techniques can be further improved by using temporal anti-aliasing
(TAA). It additionally takes samples of the previous frames into account and blends them
to obtain the final result [FEP18]. Using the history of frames is not suitable for every
application. It cannot be used by systems like Visdom, where the change of views does
not need to be achieved by continuous navigation. Thus, there is no consistent image
flow over sequential frames, which is necessary for TAA to work.

2.7 Line Simplification

Simplification algorithms for lines can be used to reduce the complexity of vector data
and therefore accelerate the rendering process. The challenge is that even if the data is
reduced, there should not be a noticeable change in the visual appearance of the lines.

Line simplification methods have a long history, going back to the well-known line
simplification algorithm proposed by Douglas and Peucker [DP73]. It is based on the
selection of a subset of representative line points by omitting points with small distance
to the original line. According to Visvalingam and Whyatt [VW93], the Douglas-Peucker
algorithm is only suitable for minimal simplification and not for the generalisation of
complex lines. Thus, they propose a line simplification method that iteratively eliminates
points spanning the triangle with the smallest area. But, both algorithms may lead to
unwanted topological changes, such as intersections between lines and self-intersections.
Therefore, there exist several methods to prevent topological changes, such as the approach
of Mantler and Snoeyink [MS00], which defines safe sets with ε-Voronoi diagrams to
avoid that. The method of Shin-Ting and Márquez [SM03] also preserves topological
properties of lines by defining star-shaped subsets. The Douglas-Peucker-based approach
of Amiraghdam et al. [ADP20] avoids line intersections by detecting points that cause
intersections and excludes them from simplification. The computational costs increase
with the number of lines and their complexity. To avoid such time-consuming calculations
at runtime, Amiraghdam et al. [ADP20] store different LODs of the lines in advance.
Then only the distance between a line and the virtual camera has to be calculated to
determine the LOD to use for rendering.

17

2. Related Work

Figure 2.15: Three methods to deal with the gaps between line segments: Adding rounded
caps at segment endpoints (left), the connection of corners of adjacent segment quads
(middle), and the use of additional triangles (right).

Image source: Vaaraniemi et al. [VTW11]

All these line simplification algorithms use a metric to determine the smallest simplification
error in world space. The problem is that the metric is losing its validity in screen space
after the perspective transformation of the lines. This leads to an additional error through
the world-space-based metric used to simplify lines, which are displayed in screen space.

2.8 Styling Techniques
Vector data can be used to represent various types of objects and to enable the viewer to
distinguish them, it is desirable to vary their visual appearance according to the data they
represent. Common attributes that are changed per object type are color, line, outline,
and filling type to differentiate road and railway lines and park and building footprint
areas, for instance. The system of Frasson et al. [FEP18] support dashed, outlined, and
textured lines and polygons by storing additional material information. This information
is then used for style-dependent fragment shading. It also includes the drawing order
to avoid intersection artifacts between overlapping decals caused by distance-based line
shading. She et al. [SLLW18] experimented with different line styles to produce variations
of solid, gradient, and dashed lines with different symbols. They parameterize each line
segment and apply different symbol functions according to the prestored line type. For
different line styles, the joints need a special treatment to avoid gaps or broken symbols
between segments. Vaaraniemi et al. [VTW11] identify three basic methods to deal with
line joints, either rounded caps at all segment endpoints are added or vertices are shifted
to connect the quads or the gap between two segment quads is closed by an additional
triangle. In Figure 2.15 the basic idea of all three methods is shown. These methods
result in different corner styles that are round, pointed, or flattened, which are referred
to as round, miter, and bevel corners [ZPYL16]. The round caps have the advantage
that they can be analytically computed based on the distance to the segment endpoints
without changing vertices or increasing the number of geometric primitives. Furthermore,
the caps are able to remove small cracks between lines, which are caused by incomplete
line data [ZPYL16].

18

CHAPTER 3
Visualization Process

Figure 3.1: Overview of the visualization process of static decals in blue and dynamic
lines in red.

The whole process of visualizing vector data, from the data input to the final display of
different decal types is described in this chapter. Figure 3.1 shows an overview over the
main steps that are executed to visualize static decals, which are static polygons and
lines and the main steps for the visualization of dynamic lines. The different decal types
and the individual steps of their screen-based visualization processes are described in
more detail in the respective sections.

3.1 Decal Types
In this thesis, 2D vector data are used to visualize three different types of decals: static
polygons, static lines, and dynamic lines. The lines can belong to polygons and represent
their outlines or they are separate lines.

19

3. Visualization Process

(a) (b)

Figure 3.2: Comparison of three different zoom levels of blue river lines and black borders
in Salzburg represented by (a) static lines and (b) dynamic lines whereby the static lines
have a constant size in world space and the dynamic lines in screen space.

20

3.1. Decal Types

All decal types are embedded into the 3D environment whereby the static decals have
a constant size in world space. The decals can cover several square kilometers and are
able to display such large objects on the screen. A virtual camera with perspective
transformation can be used, which projects the world-space decals onto the image plane
of the screen. The decal size in screen space is determined by two factors, the decal size
in world space and the distance between decal and camera. Since the decals represent
real-world objects with a fixed world-space size, they are getting smaller and larger on
the screen under perspective transformation, depending on the zoom level. The optimal
size of decals on the screen after the perspective transformation is given only in a small
distance range of the camera to the decal. It is desired that all objects of interest are
clearly visible and outside the optimal distance range the decals are getting too large,
when zooming in, or too small, when zooming out. This is a problem for large-scale
environments where both, an overview of all objects and detailed views of individual
objects are relevant. Figure 3.2a shows an example of river lines and borders in Salzburg,
which are not or only barely visible in overview and become slowly visible when zooming
in. By increasing the line width in world space, the static lines can be made visible in
overview, but in close-up views, the lines would become too large and their details would
no longer be perceptible.

To enable the visibility of lines in overviews and close-up views of such large-scale scenes,
the lines are dynamically scaled according to the current view. This dynamic scaling of
lines is shown in Figure 3.2b, where the river lines are clearly visible in overview and
after zooming in, one can still see the detailed courses of the rivers. These dynamic
lines have a constant size on the screen, but since they also have to be embedded into
the 3D environment, their visualization is particularly demanding. It is easy to render
2D lines with a constant size in screen space by projecting the lines directly onto the
image plane. But, the 2D decal lines have to lie on the 3D surface of a terrain and should
be projected onto this surface instead. The integration of the 2D lines into the 3D world
has to be done in world space. To still get lines with a constant screen-space size, the line
size is fixed in screen space and then the lines are transformed back into world space with
the inverse perspective transformation to embed them into the 3D scene. As a result,
the world-space size of the initial lines implicitly changes when zooming and varying the
distance between lines and camera. This dynamic change of the world-space size of the
lines leads to a view-dependent scaling of the area on the terrain that is covered by the
lines. Therefore, the lines have to be continuously re-embedded into the 3D scene and a
data preparation in advance is only feasible to a limited extent. Thus, the line data are
prepared according to the current view in dynamic updates, which are executed each
time before the lines are rendered.

Figure 3.1 shows the main steps executed during this dynamic update process, which
are only performed for dynamic lines before rendering. Since the initial size of static
decals does not change, their data can be completely prepared during preprocessing.
The further steps of the static and dynamic visualization process also differ due to the
different data preparation and the different zoom behavior.

21

3. Visualization Process

3.2 Preprocessing
During preprocessing different data structures are generated based on the initial vector
data. The data structures provide a more efficient access to the vector data and are used
to accelerate the render process. In Figure 3.1 one can see that the generation of the
static data structures for static decals and the matching of the dynamic lines with the
terrain are executed during preprocessing. All further data preparations of the dynamic
lines are done during dynamic updates.

3.2.1 Static Data Structures

The basic concepts of the screen-based visualization techniques of Thöny et al. [TBP17]
and Frasson et al. [FEP18] to visualize lines and polygons, are already described in
the previous chapter in Section 2.5. The concepts are also used for the vector data
visualization method of this thesis to render static decals. The same spatial data structures
are generated, which includes a regular grid, bounding volume hierarchies (BVH) for
lines and polygons per grid cell and polygon quad-trees, shown in Figures 2.11 and 2.12.
These data structures are used during rendering to speed up the determination if the
world-space position of a pixel is covered by a static decal.

Decal Grid

The regular grid divides the spatial domain covered by static decals into small cells and
the grid cells refer only to lines and polygons that are inside the cell or intersect it.
Before the lines are assigned to the decal grid, their individual segments are extended
to rectangles according to the predefined line width to perform a correct intersection
between the segments and the grid cells. To avoid the assignment of whole polygons and
lines, polygons are divided into smaller parts by quad-trees and only intersecting tree
nodes and intersecting segments of a line are assigned to cells. During rendering, this grid
limits the number of line and polygon parts that possibly contribute to a given pixel to
those located in the same cell as the pixel’s world-space position. Thöny et al. [TBP17]
propose a grid resolution of 256× 256 cells and Frasson et al. [FEP18] 1000× 1000 cells.
A higher resolution has the advantage that the decals are divided into more grid cells,
which leads to less decals stored per cell. This is beneficial for rendering because less
decals need to be tested for pixel coverage. But, a higher decal grid resolution also leads
to a higher number of cells that have to be processed during preprocessing, causing a
higher time and memory consumption due to more per-cell data.

Bounding Volume Hierarchies

In order to efficiently search through all line segments and polygon parts of a cell during
runtime, they are organized in separate BVHs. The per-cell BVHs are tree structures
that facilitate skipping whole sub-trees with several decals at once, if a pixel lies outside
the common coverage area of the decals. The common areas are defined per tree node
by 2D axis-aligned bounding boxs (AABBs), which are boxes that enclose all decal

22

3.2. Preprocessing

parts assigned to the sub-tree of the node. In the leaf nodes, the line BVHs refer to
line segments and the polygon BVHs refer to other tree-based data structures, namely
polygon quad-trees.

The order in which the decal parts are stored in the BVH determines their drawing order.
For a consistent drawing order of lines and polygons over all decal grid cells, every line
and polygon gets a different rank in the drawing order of decals. The individual parts of
a cell are sorted according to the order of the corresponding lines or polygons before they
are assigned to leaf nodes of a BVH. Therefore, different sorting criteria can be used,
such as the line width, the line length, or the polygon area. Also the importance of the
objects corresponding to the decals can be used to define the drawing order, for example
if lines represent roads, the main roads are more important and should be drawn on top.
By default the line lengths and polygon areas are used as sorting criteria for lines and
polygons, respectively, because long lines and large polygons are usually more important.

Polygon Quad-Trees

The leaf nodes of polygon BVHs do not refer to whole polygons but to polygon quad-trees.
The quad-trees are used to divide polygons into smaller parts with reduced complexity
and only the part in which a pixel is located has to be processed at runtime. The
individual polygon parts are stored in the leaf nodes of the quad-tree. Such a leaf node
is either fully inside, fully outside or partially inside the corresponding polygon. The
different leaf node types are already defined by Frasson et al. [FEP18] and presented
in Chapter 2, Related Work, in Figure 2.12a. The leaf node types fully inside or fully
outside facilitate a fast classification of a pixel status during rendering. Only for the
partially inside leaf nodes additional point-in-polygon tests have to be executed between
the pixel and the polygon part stored inside the leaf node, to determine if the pixel is
inside the polygon.

To reduce the traversal time of the polygon quad-trees during rendering, the quad-tree
culling process proposed by Frasson et al. [FEP18], presented in Section 2.5, and visualized
in Figure 2.12b, is also applied. All quad-trees that are intersecting a decal grid cell are
further analyzed by searching for the sub-tree that actually contributes to the grid cell,
which is referred to as hash cell in Figure 2.12b. Only this sub-tree is assigned to the cell
and the rest of the quad-tree can be omitted during rendering.

Interior Polygons

In addition to the static decal types that are used by Thöny et al. [TBP17] and Fras-
son et al. [FEP18], the proposed visualization method also includes interior polygons.
These are polygons inside other polygons. Interior polygons are elements that often
appear in GIS data, for example to represent inner courtyards of buildings. To display
such data correctly, it is necessary to be able to visualize interior polygons appropriately.
The outer polygons are referred to as exterior polygons. One interior polygon is assigned
to exactly one exterior polygon but one exterior polygon can have multiple interior

23

3. Visualization Process

Figure 3.3: Two exterior polygons in blue and green with four interior polygons that lead
to cutouts and one nested interior polygon in red.

polygons that may also be nested multiple times. Figure 3.3 shows two examples of
exterior polygons in blue and green with multiple interior polygons. The blue polygon
contains only one interior polygon, which leads to a cutout. The green polygon contains
four interior polygons, whereby three also lead to cutouts and one of them is nested and
produces an additional red polygon inside.

Interior polygons are also divided into smaller parts and stored in quad-trees, such as
exterior polygons, but interior polygons are not organized in BVHs. They are only
assigned to their corresponding exterior polygons and to their intersecting decal grid cells.
The resulting data structures for polygons are shown in Figure 3.4. One can see that both
exterior polygons, the blue and the green one, intersect the selected decal grid cell and
are therefore assigned to the polygon BVH of this cell. Only the first interior polygon of
the blue exterior polygon and the second interior polygon of the green exterior polygon
intersect the cell and are referenced by it. During rendering, the interior polygons can be
limited to those that belong to an already detected exterior polygon and to a certain
grid cell.

3.2.2 Terrain Matching

The preparation of vector data for an efficient rendering of dynamic lines is limited due
to their view-dependency and the resulting dynamic behavior. It is not possible to assign
dynamic lines to intersecting cells of a static regular grid, as it is done for the static
decals, because the lines can be scaled arbitrarily and the areas covered by them vary.
Thöny et al. [TBP17] define a maximum line width to assign the lines to all covered cells

24

3.2. Preprocessing

Figure 3.4: The selected decal grid cell (red) refers to a polygon BVH containing the
intersecting blue and green exterior polygons. They refer further to their interior polygons
whereby only the first interior polygon of the blue and the second of the green exterior
polygon are contained in and assigned to the detected grid cell.

with this maximum width. The use of this approach would introduce an unclear user
parameter that effectively restricts the dynamic line scaling behavior to a certain zoom
range.

To still be able to limit the number of lines during rendering, 3D line segment boxes
are generated during the dynamic update process that enclose the whole terrain area
that can be covered by their corresponding line segments. This rough determination
of the affected area limits the search space for lines during rendering only to the box
area. Thus, the number of lines that have to be processed per pixel is reduced, making
the render process more efficient. To make the segment boxes cover the affected terrain
area, they must be positioned on the terrain surface onto which the lines are projected
afterwards. Since the segment boxes cannot be precalculated, because their size depends
on the dynamically changing line width, only the corresponding line segments can be
positioned on the terrain surface.

Therefore, line segments are matched to the terrain surface by subdividing the 2D segments
and locating the newly created line vertices on the 3D terrain surface, as shown in
Figure 3.5. The terrain matching is also a typical part of geometry-based visualization
techniques, but the difference is that for the dynamic lines only the center lines are
used and not the static contours of a line with predefined width. The pixel-based

25

3. Visualization Process

Figure 3.5: The terrain matching process takes the initial 2D line segments, which are
defined by vertices v0−4 and subdivides the first and last segment because their length is
larger than a predefined maximum segment length lmax. The initial 2D vertices (gray)
and the new 2D vertices (red) are then sampled on the terrain’s heightfield to determine
the height and the position of the vertices in the 3D environment.

focus of the visualization approach of the dynamic lines is characteristic for screen-
based visualization techniques and thus it is rather assigned to them and not to the
geometry-based techniques.

To be able to use dynamic lines for different terrain types, only a minimum terrain
resolution is required to determine the maximum segment length lmax for the line

26

3.3. Dynamic Update

Algorithm 3.1: subdivideLineSegment()
Input: A line segment with vertices vstart, vend and a maximum length lmax

Output: New line segment vertices v(n)

1 n = 1
2 v(0) = vstart

3 ~s = vend − vstart

4 if ||~s|| > lmax then
5 n = floor

(
||~s||
lmax

)
+ 1 // n ≥ 2

6 ~o = ~s
n // Calculate vertex offset

7 for i← 1 to (n− 1) do
8 v(i) = vstart + (i · ~o) // Add new vertex
9 end

10 end
11 v(n) = vend

subdivision. An adaptive terrain does not cause to repeat this step every time the terrain
is changing. In Figure 3.5 only the lengths of the first and last line segment are larger
than the maximum segment length and therefore two new vertices are added during the
subdivision process, which are highlighted in red. For the subdivision process, only a
line segment with its start and end vertices vstart and vend and the maximum segment
length lmax are required to subdivide the segment and to determine new segment vertices,
as shown in Algorithm 3.1. For line segments that are shorter than the predefined
maximum length no subdivision is executed and its start and end vertices stay the same.
Otherwise, the segment is divided in smaller line segments with equal length that are
shorter than the maximum length.

The subdivision can lead to a much higher number of line vertices depending on the
maximum segment length. The larger amount of line data is an additional challenge for
the rendering process, but the terrain matching is necessary to be able to restrict the
search space for lines during rendering. After subdividing the individual line segments,
the new vertices are sampled on the terrain surface by accessing the height information
of the terrain’s height field at the vertex locations. This height information is stored
in the third dimension of the 2D line vertices. The new 3D line vertices are then used
during the dynamic update process to position the 3D line segment boxes on the terrain
and limit the terrain area that can be affected by the dynamic lines.

3.3 Dynamic Update

Compared to the previous steps, which can be done during preprocessing, this part of the
visualization process depicted in Figure 3.1 has to be performed always before rendering.
It is only necessary for dynamic lines because their data have to be continuously updated

27

3. Visualization Process

Algorithm 3.2: updateLineSegmentIndices()
Input: All vertices of a line v(n) and the image width iw in pixels
Output: New line segment indices i(m)

1 for i← 0 to n do
2 vs = transformToScreenSpace(v(i))
3 p(i) = floor(vsy) · iw + floor(vsx) // Calculate pixel index of v(i)

4 end
5 m = 0
6 for j ← 1 to n do
7 if p(j−1) 6= p(j) then
8 if segmentInFrustum(v(m), v(j)) then
9 i(m) = (m, j) // Add new line segment index

10 m = m + 1
11 end
12 end
13 end

due to the view-dependent scaling of the lines. The dynamic update can be divided into
three different steps, which are used to reduce the line data and to organize them for
a quick access during rendering. At first, the line segment indices are updated, in the
update indices step, to refer only to segments that are relevant for the current view.
During the second step, the pixel data generation, all lines that cover are stored in
per-pixel lists. The last step of the dynamic update is the line sorting, where the lines
stored in the pixel lists are sorted for a consistent line drawing order over all pixels.

3.3.1 Update Indices

Since the terrain matching step performed during preprocessing produces a high number
of line vertices, it is desirable to reduce the vertices as much as possible before the lines
are rendered. To achieve that the lines are simplified and a view frustum culling is
executed.

The aim of line simplification is the reduction of the line complexity without creating a
visible difference. The proposed approach exploits the fact that only the change over two
or more pixels can be distinguished by the viewer and the removal of consecutive line
vertices located at the same pixel cannot be recognized. The vertices are not actually
removed, because it is more efficient to update only the segment indices to refer only
to vertices that are not on the same pixel as their previous vertex. This update process
of line segment indices is shown in Algorithm 3.2. To sort out unwanted vertices, the
screen-space positions of all line vertices and corresponding pixel indices are determined.
If two consecutive line vertices are assigned to different pixel indices, a line segment index
referring to the two vertices as start and end vertex is added. Otherwise, the vertices

28

3.3. Dynamic Update

with predecessors belonging to the same pixel are omitted without changing the visual
appearance of the line. Thus, only line segments are added that cover more than one
pixel.

The proposed line simplification has a low effect in close-up views. Depending on the
density of the line vertices, they do not or rarely lie on the same pixel and the number of
reduced vertices is limited. Especially in close-up views there are many line vertices that
are irrelevant for the current image, because they are outside the visible area. Therefore,
all line segments are tested if they lie inside the view frustum and only if this is the case,
they are passed further to the next steps.

The line simplification and view frustum culling are view-dependent and have to be
performed in every image update. To accelerate the execution time of the processes,
they are parallelized. This is accomplished by performing a parallel stream compaction,
a common programming function that filters out only wanted elements from a given
array [BRSC17]. All line vertices and their corresponding pixel indices represent the
input array, which is filtered by removing all consecutive occurrences of the same pixel
index. The proposed screen-based line simplification approach deals only with the special
case of consecutive line vertices located at the same pixel. A more general simplification
could achieve a greater reduction of line data and further improve the performance,
but there is a lack of such screen-based line simplification approaches applicable during
runtime.

3.3.2 Pixel Data Generation

After the reduction of line vertices, it is also necessary to reduce the search space for lines
to a certain area on the screen. Otherwise, all line segments would be possible candidates
for all pixels, which cannot be processed in real time for a larger number of segments.

The 3D line vertices produced in the terrain matching step and reduced in the index
update step, are used to generate 3D line segment boxes. The boxes are used for a rough
determination of the area where a line segment can be, to reduce the number of line
segments that possibly cover a pixel and to process only these segments per pixel. The
location and the length of the line segment boxes, shown in red in Figure 3.6, are defined
by the corresponding segment vertices v0−6, represented by gray circles. The box width
is determined by a predefined line width, scaled according to the current view. For the
scaling, a view-dependent scale factor is calculated according to the projection type of
the virtual camera, which can be perspective or orthographic. The calculation of the box
width bw is shown in Algorithm 3.3, which is the first step of the generation process of
3D segment boxes, presented in Algorithm 3.4. The orthographic scale factor depends
only on camera internal parameters and is therefore the same for all segment boxes. The
perspective scale factor also depends on the segment vertex vstart or vend, further away
from the camera is also relevant. The more distant vertex defines the maximum scale
factor of the whole line segment and is therefore used to scale the width of the 3D line
segment box.

29

3. Visualization Process

Figure 3.6: For the 3D segment box generation, the 3D line vertices v0−6 obtained from
terrain matching are used to determine the locations and lengths of the boxes (red). The
box width bw corresponds to the scaled line width, the box offsets at the line ends to
half of the scaled line width bw

2 , and the box height bh to the minimum and maximum
terrain height tmin and tmax.

The 3D segment boxes are defined by eight corner positions, generated by shifting the
line segment vertices vstart and vend. The front surface of the segment box is defined
by four corners that are created by shifting the start vertex in four different directions.
The directions are defined by an offset vector ~ofrontSide for left and right shifts and the
height range of the terrain is used for up and down shifts. For the back surface the
end vertex is shifted up also according to the terrain’s height range but by a different
offset vector ~obackSide. To keep the area covered by 3D segment box as small as possible,
the overlaps between consecutive segment boxes are avoided. Therefore, the side offsets
depend on the previous line segment for the front surface and on the next line segment
for the back surface.

If one of the segment vertices is located at a line end, the corresponding surface is

30

3.3. Dynamic Update

Algorithm 3.3: getBoxWidth()
Input: A line width lw, line segment vertices vstart, vend, and the camera c
Output: Scaled line width bw

1 if orthographic view then
2 bw = lw · c.getOrthographicScaleFactor()
3 else if perspective view then
4 dstart = ||c.position− vstart||
5 dend = ||c.position− vend||
6 dmax = max(dstart, dend)
7 bw = lw · c.getPerspectiveScaleFactor(dmax)
8 end

Algorithm 3.4: generate3DSegmentBox()
Input: A line segment with vertices vstart, vend, the predecessor and successor line

vertices vprev, vnext, the line width lw, the minimum and maximum terrain
height tmin, tmax, and the camera c

Output: Corner positions of the segment box p(0−7)

1 bw = getBoxWidth(vstart, vend, lw, c)
2 ~s = (vend − vstart)xy

3 ~d = ~s
||~s||

4 ~n = (-~dy, ~dx)
5 if vstart is first line vertex then // Calculate front surface offsets

6 vstart.subdractLineEndOffset(~d ·
(

bw
2

)
)

7 ~ofrontSide = ~n ·
(

bw
2

)
8 else
9 ~b = getAngleBisector(vprev, vstart, vend)

10 ~ofrontSide = ~b ·
(

bw
2

)
11 end
12 if vend is last line vertex then // Calculate back surface offsets

13 vend.addLineEndOffset(~d ·
(

bw
2

)
)

14 ~obackSide = ~n ·
(

bw
2

)
15 else
16 ~b = getAngleBisector(vstart, vend, vnext)
17 ~obackSide = ~b ·

(
bw
2

)
18 end
19 p(0−3) = ((vstart)xy ± ~ofrontSide, tmin/max) // Front surface corners

20 p(4−7) = ((vend)xy ± ~obackSide, tmin/max) // Back surface corners

31

3. Visualization Process

additionally shifted by half the box width in the direction of the segment ~d. Thus, the
segment boxes belonging to the start and end segments of a line are extended to include
the line end caps. To obtain the desired box width bw, the start vertex is also shifted to
the side by half the box width in the direction of the normal vector ~n of the segment if it
is the first vertex of the line. The same shift operation is executed for the end vertex if it
is the last vertex of the line. For intermediate vertices, the angle bisector of the previous
and the current line segment determines the direction in which the start vertex is shifted
and the angle bisector of the current and the next line segment is used for the end vertex.
After defining the box width by shifting the segment vertices, the height bh is determined
according to the minimum and maximum terrain height tmin and tmax.

The so defined segment boxes enclose the area on the terrain where a line segment can
be. After projecting the segment boxes onto the screen, only the pixels covered by the
boxes can be part of a line and only for these covered pixels point-in-line tests have
to be executed. If a test is successful, the corresponding line index is stored with all
other covering lines per pixel. Additional to the line index also the line color is stored
in a linked list per pixel to reduce the number of memory accesses during sorting and
rendering.

The reason for the storage of lines per pixel is to be able to sort them afterwards and to
ensure a consistent drawing order. This is necessary because the parallel execution of this
pixel data generation process leads to lines being output in arbitrary order. Therefore,
the line indices are stored in linked lists per pixel and sorted according to the drawing
order of the lines. Linked lists are used because they support the storage of elements in
random order, which can be sorted by changing only the references.

3.3.3 Line Sorting

After the pixel generation step, the indices of all lines covering a pixel are stored in linked
lists in random order. To ensure a consistent drawing order of the individual lines, the
pixel lists are sorted accordingly. Without this process different lines would be drawn on
top and different line colors would be displayed by pixels that are part of line overlaps.
Figure 3.7a shows a visualization of dynamic lines without line sorting. One can see
artifacts at the overlap area of the red and green line, which are caused by skipping the
sorting step. In Figure 3.7b the lines are sorted consistently according to their length,
with the red line on top followed by the pink and the green line. This prevents visual
artifacts and a randomly changing drawing order of lines during runtime.

The sorting criterion can be different, but by default the length of the lines is used as for
static lines. For the sorting a selection sort algorithm is applied because it supports an
early termination as the first N elements already have their fixed position after the N th

pass. The sorting algorithm re-sorts two lines if their order does not match their drawing
order. The sorting process is terminated if the composited color of the already sorted
lines is opaque or if all lines of the list are in the correct order. This means if the line
colors are all opaque only the line rendered on top has to be found in the list and the

32

3.4. Rendering

(a) (b)

Figure 3.7: Visualization of dynamic lines (a) without a consistent drawing order and (b)
with a consistent order achieved by sorting the linked lists per pixel.

sorting process can be stopped. Only if all lines have the same line color with the same
transparency, this step can be completely skipped because the sorting would not change
the pixel colors.

After the execution of this dynamic update the lines are simplified and the vertices
outside the visible area are discarded. The lines are stored with their index in per-pixel
lists and the list elements are sorted according to the line drawing order. The resulting
per-pixel data are passed further to the next step of the visualization process where the
dynamic lines are rendered.

3.4 Rendering

The rendering process of static and dynamic decals is screen-based and executed after
the terrain is rendered to be able to project them onto the terrain surface. During decal
rendering, the terrain color of pixels that are covered by decals is replaced with the
corresponding decal color, but the pixel depth determined by the terrain remains the
same.

To accelerate the rendering, different data structures are generated during preprocessing
for all decal types and during the dynamic update for dynamic lines. An overview of this
data preparation process and the resulting data structures are shown in Figure 3.8. The
data structures are deployed to find all decals that contribute to a pixel and to determine

33

3. Visualization Process

Figure 3.8: The data structures that are used to accelerate the rendering process are
generated during preprocessing and additionally during dynamic updates for dynamic
lines. For static decals a decal grid and BVHs for line segments and polygon quad-trees
are created and for dynamic lines linked lists containing all lines covering a pixel are
built up.

the pixel color accordingly. While the static decals are rendered with constant size, the
dynamic lines are scaled according to the current view.

3.4.1 Static Decals

The render approaches of static lines and polygons are similar, because both use the
decal grid and corresponding BVHs to determine if the decals contribute to a pixel. The
main steps that are executed during the render process of static decals to determine the
color of a pixel are shown in Algorithm 3.5.

The first step of the screen-based rendering of static decals is to calculate the world-space
position of the current pixel center position by using the terrain depth td. The world-space
pixel position pws can then be located on the decal grid and this location belongs to a
certain grid cell. The corresponding cell index icell delivers all static decals d(m) that
potentially cover the current pixel. The decals of a cell are organized in a BVH to
accelerate the search for decals that really cover the current pixel and contribute to the
pixel color pc. The nodes of this BVH n(m) are traversed from top to down and from left
to right according to the containment of the pixel position in the node AABBs nAABB.
If the pixel position pws is outside the nodes’s AABBs, the whole sub-tree of the node
can be skipped and the next right node, which has not already been processed is tested.
The search for pixel-relevant decals may end at one or more leaf nodes, depending on the
number of decals that cover the current pixel. A leaf node of the BVH refers either to an
exterior polygon quad-tree or to a line segment.

34

3.4. Rendering

Algorithm 3.5: renderStaticDecalsofPixel()
Input: A pixel position p, and the data structures of static decals
Output: Pixel color pc

1 td = getTerrainDepthAtPosition(p)
2 pws = getWorldSpacePosition(p, td)
3 icell = getGridCellIndex(pws)
4 d(m) = getDecalsOfCell(icell)
5 n(m) = getBVHNodesOfCell(icell)
6 i = 0
7 while i < m do
8 if pws.inside(n(i)

AABB) then
9 if n(i)is internal node then

10 i = getLeftChildIndex(i) // Go to left child node
11 continue
12 else if pws.inside(d(i)) then
13 pc.addColor(d(i)

c) // Add decal color
14 if pc is opaque then
15 break
16 end
17 end
18 end
19 if nodes left to process then
20 i = getNextRightNodeIndex(i) // Go to next right node
21 else
22 break
23 end
24 end

The quad-trees also have to be traversed until a leaf node is reached but the traversal ends
exactly at one leaf node, which is determined by the pixel position. Depending on the
leaf node type, fully inside, fully outside, or partially inside, the pixel can be immediately
classified as inside or outside the exterior polygon or an additional point-in-polygon test
has to be performed. For pixels that are detected to be inside of an exterior polygon, it
has to be tested if the pixel is located at a cutout produced by an interior polygon, before
the corresponding polygon color is applied to the pixel. Therefore, the list of interior
polygon parts assigned to a cell is searched for those that belong to the detected exterior
polygon. If an interior polygon is found, its corresponding quad-tree is also traversed to
a leaf node. The determination whether a pixel is covered by an interior polygon is done
the same way as for exterior polygons. After this process the pixel is either inside or
outside of an interior polygon. For the first case, the exterior polygon covers the pixel and
its color can be added to the pixel color. Otherwise, the pixel is located at a cutout or at

35

3. Visualization Process

a nested interior polygon and the color remains unchanged or is adjusted accordingly.

For line segments a point-in-line test can be performed directly to determine if the current
pixel belongs to a line. If the pixel is inside of a static decal, the decal color dc is added
to the pixel color pc with front-to-back compositing. The search process is continued
until the pixel color is opaque or if all nodes are processed and the BVH is fully traversed.
Then there can be no more static decals that can change the final pixel color.

3.4.2 Dynamic Lines

The render pass of dynamic lines is simple and fast because the line data is already
prepared according to the current view and organized per pixel after the dynamic update
phase. The line data can be efficiently processed during rendering by accessing the linked
list of a pixel. There is a linked list for each pixel containing all required lines in their
drawing order. It is only necessary to look up the linked list of the current pixel and
if the list is empty, there are no lines covering the pixel. For pixels with non-empty
lists, the pixel color has to be determined. This is done by going through the linked list
and performing front-to-back compositing of the individual line colors until the color is
opaque or the end of the list is reached.

3.5 Anti-Aliasing
The described rendering process of all decal types produces hard and jagged edges. This
is caused by the point-in-line and point-in-polygon tests, which use only the pixel center
position to determine if the whole pixel is inside or outside the corresponding decal. Pixels
that are touching a decal are either fully colored with the decal color or left completely
empty, depending on the location of the pixel center. The resulting jagged edges can be
seen in Figure 3.9a for a static outline and in Figure 3.9c for a dynamic outline. To avoid
such unpleasant edges and to get a smooth transition from decal color to terrain color,
anti-aliasing has to be applied.

Analytical anti-aliasing methods require additional computations during rendering to
continuously increase the transparency to the outside of the decals to create smooth decal
edges. Fading out the edges, which are embedded into the 3D environment, requires
additional information such as the pixel size in world space to determine if a pixel is
part of the decal edge or not. To avoid this additional effort and to keep it simple, other
methods are used.

In order to create smooth edges, different anti-aliasing methods are applied to static
decals and dynamic lines. MSAA delivers high quality anti-aliasing and can be easily
applied during a render pass by taking multiple samples per pixel to calculate an average
pixel color. Therefore, this anti-aliasing method is used to improve the visual appearance
of static decals. A black outline anti-aliased with MSAA is shown in Figure 3.9b. MSAA
is not suitable for the pixel-based approach of the dynamic lines because the affected
pixels are already determined and stored before rendering in the dynamic update process.

36

3.6. Line Styles

(a) (b)

(c) (d)

Figure 3.9: A blue polygon with static black outlines (a) without anti-aliasing and (b)
with MSAA. The same polygon with dynamic black outlines (c) without anti-aliasing
and (d) with FXAA.

For the anti-aliasing of the lines with MSAA additional samples are required, which
determination and storage are too time- and memory-consuming for real-time rendering.
Thus, the dynamic lines are rendered without anti-aliasing and FXAA [fxa] is applied
afterwards as a post-process. This anti-aliasing technique is described in Section 2.6
and a comparison between the aliased and anti-aliased dynamic outlines is shown in
Figure 3.9. A disadvantage of using FXAA is that it leads to artifacts applied on thin
lines, which can be reduced by MSAA.

3.6 Line Styles
Different styles for lines and outlines can be used to influence their visual appearance.
Both static and dynamic lines can be displayed with different corner styles, which are
round, miter, and bevel. As Figure 3.10 shows, one line segment is defined by two vertices
v0 and v1 and has two corners. If the line segment is not at the line end, the corners to
the previous segment and to the next segment can produce a gap, such as in Figure 3.10a.
The corner styles close this gap between two consecutive line segments with different
techniques and influence the style of the line.

For a correct computation of the corner styles, the neighborhood information of a line
vertex is necessary. To avoid the storage and access of this information during rendering,
all additional positions required for the corner styles are precalculated for static lines.

37

3. Visualization Process

(a) (b)

(c) (d)

Figure 3.10: (a) Two corners created by three consecutive line segments represented by
gray rectangles defined by black vector lines with vertices v0 and v1 and line width w.
All necessary positions for the different corner styles (b) round, (c) miter, and (d) bevel
are highlighted in red.

The corner positions of dynamic lines are changing with the view as the lines do. Since
the lines are only scaled while their orientation stays the same, the direction vectors of the
corner positions could be calculated during preprocessing. But, due to the simplification
of dynamic lines by removing vertices, the predecessor and successor vertex may change
and the direction vectors with them. Thus, all information that is necessary for the
corner styles is determined during the dynamic updates.

The round corner style does not require additional corner positions because only the
radius r, shown in Figure 3.10b, is required to determine if a pixel lies inside the corner
gap. Since the radius is half the line width w, no further processing is necessary for
this corner type because the width is already predefined. To be able to determine if a

38

3.6. Line Styles

(a) (b) (c)

Figure 3.11: The three corner styles for lines and outlines (a) round, (b) miter, and
(c) bevel shown for a green polygon with black outline.

pixel lies inside a line with a miter corner style, one additional 2D vector is required per
corner, m0 or m1 in Figure 3.10c. This vector is the angle bisector of two consecutive line
segments. The lengths of the miter vectors depend on two factors, the line width and the
angle between the segments meeting at the corner. The smaller the angle is, the longer
the vector. For the point-in-line tests during the render process also the inverse vectors
of the miter vectors −m0 and −m1 are necessary, which do not have to be stored because
they are implicitly given by the miter vectors m0 and m1. For the bevel corner style two
additional 2D vectors are necessary per corner, b0 and b1 for the first corner and b2 and
b3 for the second one. They are pointing in the direction of the normals of the two line
segments meeting at a corner. The sign has to be chosen so that the normals point in
the direction of the corner gap. The correct sign can be determined by the direction in
which the second line segment points from the first segment, which is either left, right, or
straight. If the gap is left or right, the right or left normal has to be used respectively,
because the gap is located where the segment does not point. For straight line segments
the gap does not exist and does not have to be closed and the directions of the bevel
vectors are irrelevant.

The results of the three different corner styles are shown in Figure 3.11 by black outlines.
They are created by using different point-in-line tests during the render process according
to the selected corner style. This is done in the same way for static and dynamic lines.
The advantage of the round corner style is that its point-in-line test can be performed
more efficiently compared to the other corner styles. If it is of higher priority that the
lines have sharp corners to represent the underlying vector data in the best possible way,
the miter corner style should be preferred. This may be the case for outlines of polygons
representing building footprints, which are usually angular and not round. If two line
segments are very acute-angled, their shared corner can become very sharp and long with
the miter corner style. Then the bevel corner style can be used, which cuts off the corner.

39

3. Visualization Process

(a) (b) (c)

Figure 3.12: The three outline modes for static polygon outlines (a) inset, (b) normal,
and (c) offset shown for a blue polygon with a semi-transparent black outline.

Another stylistic element are the three different outline modes, inset, normal, and offset
for static lines, which can be seen in Figure 3.12. The outline modes create different
effects for the enclosed polygons and depending on the polygons a specific mode can be
useful. The inset outline mode keeps the outlines inside their corresponding polygons.
For polygons that are close together, the inset mode can be used to prevent outlines to
overlap. The outlines are completely outside their polygons if the offset outline mode is
used. Small polygons can be a good use case for the offset mode because the outlines do
not hide the enclosing polygons. The inset and offset outline modes are only available
with a miter corner style, because otherwise the modes would produce gaps between the
polygons and their outlines. Furthermore, the outline modes inset and offset can lead to
a wrong perception of polygons, which may appear shrunk or enlarged. By using the
normal outline mode, the outline is half inside and half outside of its polygon and the
polygon size is rather perceived as it is.

For the normal outline mode no additional steps are necessary during preprocessing or
rendering. To be able to display static lines in inset and offset modes, the line widths are
doubled before the lines are assigned to the decal grid cells. In case of the inset mode
the outline part that is outside of the corresponding polygon can then be omitted during
rendering. For the offset mode the outline part inside the polygon is omitted and not
displayed to achieve the desired effect.

40

CHAPTER 4
Implementation Details

The previous chapter introduced the two screen-based visualization approaches for static
decals and dynamic lines. This chapter covers details of the concrete implementation of
the individual steps, which are shown and classified according to their processing on the
Central Processing Unit (CPU) or Graphics Processing Unit (GPU) in Figure 4.1. The
implementation details also reveal some limitations of the used visualization methods,
which are also presented and discussed in this chapter.

The proposed vector data visualization method is integrated into the already exist-
ing framework of the flood management system Visdom [vis]. For the implementa-
tion the graphics API OpenGL [ogl] version 4.6 and the parallel computing platform
CUDA 10.2 [cud] with Thrust [thr] are utilized.

4.1 Input Data
For the screen-based decal rendering it has to be determined, which pixel world-space
positions are covered by decals defined by 2D vector data. Therefore, different data
structures and user settings are deployed to visualize given georeferenced vector data,
as shown in Figure 4.1. These vector data consist of lines and polygons, which are
available as open and closed polylines defined by 2D positions in double precision. The
required vector data are collected from various open and closed data sources, such as
OpenStreetMap [osm], which is a project that creates and provides free geographic data.

In addition to the vector data, different settings can be made by the user to control the
visualization process according to the individual needs. This includes settings for the
data structure generation and settings to adjust the color, width, and style of the decals.
Since the quad-tree generation for particularly complex polygons has a major impact
on memory consumption, preprocessing, and rendering time, the user can set limits for
the quad-tree leaf capacity and tree depth according to individual requirements. Low

41

4. Implementation Details

Figure 4.1: The individual steps of the visualization process of static decals in blue and
dynamic lines in red divided according to processing either on the CPU or the GPU. The
steps in which the static decals differ are highlighted in orange for lines and in green for
polygons.

42

4.2. Preprocessing

limits can accelerate the preprocessing and reduce memory requirements for quad-tree
data, but at the expense of slower rendering and vice versa for high limits. Different style
settings allow the user to determine the visual appearance of the decals to reflect the
associated data objects, e.g. by using green color for parks or color scales to color code
additional information about the objects. The use of different decal colors, line styles,
and outlines for polygons can make the individual data objects distinguishable.

4.2 Preprocessing
During preprocessing the given vector data and user settings are used to generate data
structures to accelerate the decal rendering and to adjust the visualization process to
the user needs. In Figure 4.1 one can see that the preprocessing of static decals is
done completely on the CPU and mostly on the GPU for dynamic lines. The parallel
construction of the tree-based data structures is not trivial and is therefore executed
mainly sequentially on the CPU instead. The preprocessing of static decals could be
accelerated if it would be parallelized and transferred to the GPU, but this remains open
for future work.

4.2.1 Static Data Structures

The data that are necessary for an efficient rendering of static decals are prepared and
stored in this step. This includes the generation of shader storage buffers containing
information about BVHs, line segments, and polygon quad-trees. Figure 4.2 shows an
overview of these buffers structured according to the information they contain and the
arrows indicate references from the data stored in one buffer to the data of another
buffer. The first step of the data preparation of static decals is the creation of the decal
grid to subdivide the area covered by all decals into small grid cells. Then the line and
polygon data are created and stored in corresponding buffers, whereby the line data are
based on line segments and polygon data on quad-trees. Individual line segments and
polygon quad-tree nodes are then referenced to intersecting decal grid cells. After the
determination of line segments and polygon quad-tree nodes belonging to individual cells,
they are used to construct separate polygon and line BVHs per grid cell. All required
data for the BVH traversal during rendering are also stored in different shader storage
buffers.

Decal Grid

The decal grid is a 2D regular grid containing all static decals and the grid size is therefore
determined by the common AABB of all lines and polygons. Then a predefined number of
250,000 grid cells is used to divide the grid area. The resulting decal grid has a dimension
of 500× 500 cells, which allows the decals to be rendered fast, while the preprocessing
does not take too much time. As Figure 4.2 shows, the cell index icell of the decal grid
cell has to be calculated during rendering to access the data of BVHs, lines, and polygons.
The cell index corresponds to the grid cell containing the world-space position of a pixel

43

4. Implementation Details

Figure 4.2: The data that are necessary for rendering of static lines and polygons with
data types and sizes. They contain indices i, numbers of objects n, and positions with
xy-coordinates and are stored in shader storage buffers. Decal grid and BVH data are
required for both decal types, for lines also segment data and for interior and exterior
polygons also quad-tree data are necessary.

44

4.2. Preprocessing

center and the referred data belong to lines and polygons intersecting the cell. For the
cell index determination the grid origin, dimension, and cell size is required, which are
calculated once during preprocessing and passed to the fragment shader during a render
pass.

The generated decal grid covers the whole area where static decals occur and is ready to
be intersected with line segments and polygon quad-trees. Before the execution of the
intersection tests, all line segments have to be extended to rectangles according to their
predefined line widths, to perform correct intersection tests between the segments and the
grid cells. To be able to assign only polygon parts to decal grid cells, both interior and
exterior polygons are divided into smaller parts by quad-trees. These data preparation
for lines and polygons is described in the following sections.

Line Segments

The line data are prepared according to predefined line widths and selected line styles to
execute correct intersection tests with the decal grid, which is generated in the previous
step. The line segments can then be assigned to their intersecting grid cells to reduce the
number of line segments that have to be tested per pixel at runtime.

A line segment is defined by the positions of its two end vertices and the line width
and for miter and bevel corner styles also by its corner positions. To make these line
segment data accessible during rendering they are stored in different shader storage
buffers. In Figure 4.2 one can see, that the xy-coordinates of all line vertices of the input
2D polylines are stored in a line vertices buffer in 2D float vectors float(xv, yv). There
are different line properties that are required for static and dynamic lines, which include
the line width, line colors, and additional values to color code information on the line,
such as its importance. The line properties are stored for both line types in corresponding
properties per line buffers. Line widths are defined in meters in the 3D world and are
represented by floats stored in a line width buffer per line. The RGBA colors of lines
are stored in 4D float vectors float(r, g, b, a) in a line color buffer. For a color coding of
additional information on lines, predefined transfer functions are used to map per-line
values stored as floats to a certain line color. To make the line properties accessible for a
certain line segment during rendering, all line indices iLine are stored per vertex in an
additional line indices per vertex buffer.

Static lines and outlines can be displayed with three different corner styles, round, miter,
and bevel, and three different outline modes, normal, inset, and offset, which are described
in Section 3.6. In addition to the shader storage buffers listed in Figure 4.2, corner
positions for miter and bevel corner styles are also stored per line vertex if one of these
styles is requested by the user. The precalculation of all required corner positions for the
miter and the bevel corner styles is done in parallel per line vertex on the CPU. To avoid
abrupt ends of lines, null vectors are stored to the vertices at the line ends, indicating
that a round end cap has to be inserted there. This is also done to avoid long sharp
corners if a miter vector becomes too long. If two consecutive line segments are at an

45

4. Implementation Details

angle smaller than a predefined angle limit of 40 degrees, a null vector is added and the
miter corner is replaced by a round corner during rendering.

Before the line segments are tested for intersection with the individual grid cells, they
are extended according to predefined line widths and styles in parallel on the CPU per
line segment. The segments are extended to rectangles for round and bevel corner styles
having a width according to the corresponding line width and a length according to
the line segment length. If the lines have to be displayed with a miter corner style, the
segments are extended to quadrilaterals according to the already calculated miter vectors
of the corresponding segment end points. The polygon outline modes inset and offset are
only available for outlines with the miter corner style to avoid gaps between the outlines
and their enclosing polygon. For these outline modes, the outline widths are doubled
before they are used to generate segment quadrilaterals, so that the outline part that is
inside or outside of the enclosing polygon can then be omitted according to the selected
outline mode during the render process.

After the parallel extension of all line segments, they are assigned to all decal grid cells
they cover. Therefore, the AABBs of the line segments are calculated and located on the
decal grid for a rough determination of all possible line segments covering a grid cell. This
is done for efficiency reasons, to limit the number of possible cell intersection candidates
to certain line segments and to avoid accurate intersection tests between all segments
and all cells. For an accurate intersection of the grid cells with all their candidate line
segments, the segment rectangles and quadrilaterals are intersected with the cell squares
in parallel on the CPU per grid cell. To make all intersecting line segments of a grid
cell accessible with a cell index icell, all intersecting line segment indices are stored in a
segment indices of cells buffer grouped per grid cell. The segment indices are stored in
2D integer vectors int(istartV , iendV), where the first element refers to the start vertex
and the second one to the end vertex of the segment. This is memory-efficient because
the use of line vertex indices avoids saving the vertex positions repeatedly for every cell
they occur and the storage of 2D float vectors per cell can be replaced by integer indices
referring to these vertex position vectors, which are stored only once. The segment indices
are grouped per cell, but to know where the relevant indices of a cell are located in the
indices buffer, an additional offset buffer is required. Therefore, the offset to the first line
segment index and the number of segments assigned to a cell are stored in 2D integer
vectors int(nprevSeg, ncurSeg) per cell.

After this preprocessing step the line segment data can be accessed during rendering by
a cell index, which refers to an offset buffer pointing to all relevant line segment indices
of a cell. The line width, vertex positions, and corner positions stored at the segment
indices are then used to determine if a pixel is covered by a static decal line.

Polygon Quad-Trees

The segments of the input 2D polylines of polygons are not directly assigned to decal
grid cells. For a point-in-polygon test all segments of a polygon would have to be tested,

46

4.2. Preprocessing

which can become time-consuming for complex polygons. Thus, the interior and exterior
polygons are divided into smaller parts by quad-trees and only the segments of small leaf
polygons are used for testing. The shader storage buffer structure of polygon quad-trees
presented in Figure 4.2 is generated for interior and exterior polygons to provide an
efficient rendering. The quad-tree data for interior and exterior polygons are stored in
the same buffers grouped per polygon. Only the exterior polygon indices buffer, which
contains the exterior polygon indices int(iexteriorP oly) per interior polygon, is reserved for
interior polygons. The buffer is necessary to access the corresponding exterior polygons
per interior polygon during rendering.

The polygon quad-tree generation is done in parallel on the CPU per polygon for
all exterior and interior polygons. The quad-trees consist of internal nodes and leaf
nodes, whereby all nodes refer to AABBs of the rectangular node quads, internal nodes
additionally refer to their child nodes, and leaf nodes also to polygon segments. These
node AABBs are stored in 4D float vectors float(xmin, ymin, xmax, ymax), containing the
xy-coordinates of the minimum and maximum position of the bounding box. The use of
square quads would be more memory-efficient because only a length has to be stored and
for rectangular quads two values, the length and the width of the rectangle are required.
But, rectangular quads have the advantage, that the quad-trees can adapt better to
polygons. This is especially advantageous for long and thin polygons, where the trees
can remain much narrower and do not cover an unnecessarily large area. The polygons
are then assigned to less decal grid cells because their quad-trees are smaller.

The quad-tree generation is based on a queue and the root node is added as the first
element, which contains all polygon segments and refers to the rectangular AABB of
the whole polygon. The root node AABBs of a polygon can later be accessed by the
node offset int(nprevNodes) that are stored in a node offsets per polygon buffer. A root
node AABB is divided into four further AABBs, which are assigned to the child nodes
of the root node and added to the queue. The segments of the parent node are then
assigned to its child nodes if they are inside or intersect the respective child node AABB.
The child AABBs are not disjoint because they are expanded by a small offset to avoid
precision problems at segments that are only touching the border between two nodes.
Such segments would not be assigned to any node without this offset. To know where
the child node AABBs of the current internal node are located, an index ioffset to the
first child is stored per internal node in a node types and offsets buffer. The subdivision
process of the internal nodes is continued until a predefined leaf capacity or a maximum
quad-tree depth is reached.

The leaf capacity determines how many polygon segments can be assigned to a leaf
node and thus influences the number of segments that have to be tested during the
render process. Frasson et al. [FEP18] use only the leaf capacity as termination criterion
for the polygon quad-tree generation but for complex polygons this can lead to very
deep quad-trees, especially for a small leaf capacity. This should be prevented because
the quad-trees are generated sequentially and have to be traversed during rendering
and both processes take longer the deeper the trees become. Therefore, an additional

47

4. Implementation Details

termination criterion is introduced that prevents the quad-trees to grow deeper than a
certain limit, even if the leaf capacity of the leafs is exceeded. Both termination criteria
can be adjusted by the user to control the maximum resolution of the quad-trees and the
time consumption during preprocessing and rendering.

So, if one termination criterion is met, a leaf node is reached, which has to be classified
according to the three leaf node types already defined by Frasson et al. [FEP18], which
are either fully inside, fully outside, or partially inside the polygon. If no segment is
assigned to a leaf node, it is either completely inside or outside of the polygon. This is
clarified with a final point-in-polygon test with the center position of the leaf node. To
make this information accessible during the render process, the node type tnode is stored
as integer value for all nodes of all polygon quad-trees, where 0 indicates an internal
node, 1 a fully outside leaf node, 2 a fully inside leaf node, and 3 a partially inside leaf
node. The node type tnode stored in a buffer for node types and offsets is used during
rendering to determine if a pixel is located in a completely inside or outside leaf node
and to quickly decide whether the pixel lies inside or outside the polygon.

To all other leaf nodes, polygon segments are assigned and therefore they are partially
inside the corresponding polygon. For these leaf nodes, small leaf polygons are created
by clipping the polygon segments, assigned to the leaf node, at the node boundary.
Afterwards, closing segments are added to complete the leaf polygon. The resulting xy-
coordinates of the leaf polygon vertices are then stored in 2D float vectors float(xv, yv) in
a leaf polygon vertices buffer. These vertex positions are then referenced by leaf segment
indices int(istartV , iendV), containing the indices to two segment end positions, such as
for the static line segments. These segment indices are not stored per cell, each leaf
polygon segment is referenced only once by a 2D integer index vector. During the render
process, the leaf polygon data is accessed to execute point-in-polygon tests between the
pixel and the leaf polygon. Therefore, leaf segment index offsets int(nprevSeg, ncurSeg)
are stored per leaf node that point to all segments of the corresponding leaf polygon.
The leaf segment index offsets can be accessed by the offset ioffset stored per partially
inside leaf node together with the node type tnode in a 2D integer vector in a node types
and offsets buffer. To be able to display polygons with individual colors, either polygon
colors or values for a color mapping are stored in corresponding properties per polygon
buffers. As for static lines, the RGBA colors are stored in 4D float vectors float(r, g, b, a)
and the values for the color mapping are stored as floats.

After the generation of the polygon quad-trees, the quad-tree data are assigned to
intersecting cells of the decal grid. The indices of exterior and interior polygons intersecting
a cell are grouped per cell and stored as integer values int(ipolygon) in separate polygon
indices of cells buffers. To know where the interior and exterior polygons of a cell are
located in these index buffers, additional index offsets int(nprevP oly, ncurP oly) are stored
per cell referring to the indices of both polygon types. The quad-tree culling process
proposed by Frasson et al. [FEP18] enables skipping of quad-tree nodes that are not
relevant for the assigned cell. This is implemented with a culling offset int(istartNode)
stored per polygon assigned to a cell, which points only to the sub-tree that is inside

48

4.2. Preprocessing

the cell. The offsets are stored in a culling offsets of cells buffer for interior and exterior
polygons to skip the rest of the corresponding quad-tree during the render process. The
quad-tree traversal can be restricted only to this relevant sub-tree.

Bounding Volume Hierarchies

After the generation of the decal grid and the assignment of the generated line segment
and polygon quad-tree data to intersecting grid cells, the line segments and exterior
polygon quad-trees are organized in BVHs to avoid looping over all cell decals during
rendering. The interior polygons are referred by their exterior polygons and are therefore
not organized in BVHs. The BVHs are fully balanced binary trees storing the line
segments and exterior polygon quad-trees of a cell in the leaf nodes. Since the lines and
polygons are rendered separately, the data are also stored in separate BVHs, but they are
generated in the same way. Due to the independence of the individual cells, the BVHs
are created in parallel per cell.

At first, the cell decals are sorted because the order in which they are stored in the
BVH determines the drawing order, the first object is processed first and drawn on top.
The sorting can be done according to different criteria, such as the line width or length.
Thöny et al. [TBP17] sort the line segments according to their midpoints along a space
filling curve. Line segments of the same line can have a different rank in the drawing
order of the corresponding cells. Then it may occur that intersecting lines are drawn
in a different order in different cells, because the segments of a line are not consistently
sorted across the cells. To keep a certain order that is consistent for all segments of a
line over all cells, the sorting should not be based on individual line segments but on line
properties, such as the line importance. If there are no additional importance criteria,
the line segments are sorted according to the lengths of the corresponding lines and the
polygon quad-trees according to the areas of their polygons. This is done because long
lines and large polygons are supposed to be more important, for example if they represent
roads or buildings and therefore should be rendered on top of other decals. Furthermore,
larger decals cover a larger area and thus the probability increases that a pixel belongs
to them. Since they are processed first, it is more likely that a decal covering a pixel is
found faster. The sorting process is done in parallel per cell for the grouped line segment
indices or polygon indices of a cell on the CPU with the sort() operation of the C++’s
Standard Template Library (STL).

After the sorting of the per-cell indices, the corresponding line segments and polygons are
assigned to leaf nodes. To facilitate an easy BVH traversal during rendering by implicit
indexing of the tree nodes, a full binary tree is desired, therefore empty leaf nodes are
added until their number is a power of two. These empty leaf nodes are the right sibling
nodes of the non-empty leaf nodes and do not refer to any decal data. The non-empty leaf
nodes refer to the objects assigned to the cell, which are either line segments or polygons.
The AABBs of the cell objects of two consecutive leaf nodes are merged and assigned to
the parent nodes. This merging process is continued to produce all internal nodes until
the root node of the BVH is reached. The root node and all internal nodes only refer

49

4. Implementation Details

to the merged AABBs of all cell objects stored in the leaf nodes below them. During
rendering, multiple decals can be skipped at once by checking if a pixel lies outside of their
common AABB. Therefore, the xy-coordinates of the minimum and maximum positions
of all node AABBs are stored in 4D float vectors float(xmin, ymin, xmax, ymax) inside
a node AABBs buffer. To access all AABBs associated with the line or polygon BVH
of a cell during the render process, index offsets int(nprevNodes, ncurNodes) referring to
the BVH nodes of a cell are stored in a node index offsets buffer per cell. These index
offsets point to all node indices int(iAABB) of the BVHs, which refer further to AABBs
or indicate an empty node and the end of the tree traversal with the negative index −1.
Since the number of non-empty leaf nodes and the number of cell objects is the same,
the leaf node data, which are the line segment and polygon indices of a cell, can be
accessed by the corresponding leaf node indices. Before that, the number of internal
BVH nodes ninternalNodes has to be subtracted from the leaf node indices and thus the
number of internal nodes is also stored per cell during preprocessing.

4.2.2 Terrain Matching

The data preparation during preprocessing is limited for dynamic lines due to their
view-dependency. In Figure 4.3 one can see all data necessary for the rendering of
dynamic lines stored in shader storage buffers, where only the line vertex positions and
properties per lines are processed during preprocessing.

The initial vector lines are defined by 2D vertices and the static lines are transformed
into the 3D space when they are projected onto the terrain surface during the render
process. For dynamic lines the height information of the terrain is already added during
preprocessing to enable the generation of 3D line segment boxes during the dynamic
updates, which are used to limit the area on the terrain surface that may be covered by
the lines. These segment boxes are based on the 3D segments created by the terrain
matching process, because they represent the center line of the boxes. The process can
be divided into two individual steps, the line subdivision and the sampling of the lines on
the terrain surface, which are mainly executed on the GPU by using compute shaders.

Line Subdivision

To be able to adapt the initial vector lines to the terrain surface, they are subdivided
according to the minimum terrain resolution. Therefore, a maximum line segment length
is defined, which is half as large as the terrain resolution. Every segment is divided into
equal sized segments until the subdivided segment lengths are shorter than the maximum
length. If the line segments of the initial vector lines are larger than the maximum line
segment length, the subdivision process leads to a higher number of vertices. Since the
process is executed in parallel, the vertex offsets per line segment have to be determined
first, to write the new vertex data to the correct memory locations. The number of
subdivisions can easily be calculated by the division of the line segment length by the
maximum length and the integer part of the division result then determines the number
of additional line vertices. This step is done in parallel for every line segment, but the

50

4.2. Preprocessing

Figure 4.3: All data that are used to render dynamic lines with data types and sizes
are generated and stored during preprocessing and dynamic updates in shader storage
buffers. They contain indices i, positions with xyz-coordinates, and colors.

final segment offset calculation is executed sequentially on the CPU by summing up the
number of subdivisions of all previous line segments. The execution of a parallel prefix
sum on the GPU to calculate these offsets could further accelerate this step.

The resulting offsets are required for the next step, which is the calculation of the new
intermediate 2D line segment vertices. Therefore, all dynamic line buffers of Figure 4.3
depending on the number of line vertices nvertices have to be resized according to the new
number of vertices. This includes the buffers containing line vertices, previous and next
vertex indices and line indices per vertex. The already calculated offsets then determine
the buffer location where the new data are written in parallel. The initial line segments
are then subdivided by inserting new 2D vertices at equal intervals along the segment,
which are then stored according to the determined vertex offsets. The offsets are also
used to store the index of the first vertex of polygon outlines per line in a separate
line property buffer. This information is stored additionally to the line properties, i.e.,
width, color, and color mapping values as for static lines described in Section 4.2.1. The
first vertex index of a polygon outline is required for the index update process, which
is performed during the dynamic update to store the neighborhood information of a
vertex. The neighborhood information is then used during the pixel data generation step

51

4. Implementation Details

to determine the orientation of the 3D segment boxes. Another property that is stored
per line is the drawing order, which is implicitly stored for static lines by the order of
the BVH leaf nodes, but is explicitly stored for dynamic lines by inserting the order as
integer values per line in a corresponding properties per line buffer. The drawing order is
then used during the dynamic updates to sort the line data of a pixel. After this step the
dynamic line vertices are still in 2D, but they have the correct resolution to be matched
with the terrain in the next step.

Line Sampling

After the subdivision step, the dynamic lines can easily be sampled on the 3D terrain
surface. Therefore, one sample from the terrain’s heightfield is taken at the position of
each newly created line vertex. The terrain height is stored together with the 2D line
vertices in 3D vectors float(xv, yv, zv), which are ready to be accessed in the dynamic
update process to generate 3D line segment boxes. As most other steps of the terrain
matching, this line sampling step is also executed in parallel on the GPU by performing
one compute shader invocation per vertex. This makes the preprocessing of dynamic
lines much more efficient than the CPU processing of the static decals.

After the terrain matching the 3D line vertices and the line properties, i.e., width, color,
color mapping values, outline start indices, and drawing order, are stored in corresponding
shader storage buffers and can be accessed during dynamic updates and rendering of the
dynamic lines.

4.3 Dynamic Update
Due to the view-dependency of dynamic lines they have to be continuously updated and
the dynamic update is executed every time before the lines are rendered. As Figure 4.1
shows, the process consists of three steps, which are all performed on the GPU and
described in more detail in the following sections.

4.3.1 Update Indices

Due to the subdivision of the dynamic lines during preprocessing, they consist of more
vertices than the static lines do, which leads to a higher memory consumption and to
a more time-consuming rendering. The 3D line vertices produced during the terrain
matching process are therefore reduced by line simplification and view frustum culling,
which remove indices to vertices that are irrelevant for the current view.

The lines are simplified by detecting consecutive vertices that are projected to the same
pixel after perspective transformation in the current view. Then all indices to points
whose predecessors are on the same pixel are removed. This simplification does not
produce a visual difference of the lines because the change inside one pixel cannot
be recognized anyway. The first step to achieve this screen-based simplification is to
determine the pixel positions of all vertices. This is done in parallel per vertex using a

52

4.3. Dynamic Update

compute shader, which calculates the pixel index ipixel and stores it together with the
vertex index iv in a pixel indices per vertex buffer, shown in Figure 4.3, for the next step.
Although, the vertex index is implicitly given by the position, where the corresponding
pixel index is stored, the vertex index is stored explicitly to the pixel index, because the
positions change by the next step.

The next step is a stream compaction, which filters the line vertices based on their
corresponding pixels. To execute this stream compaction the unique() operation of the
Thrust library [thr] provided by CUDA [cud] is applied to the pixel indices of the pixel
indices per vertex buffer. It removes all consecutive entries with the same pixel index and
therefore discards all vertices that are located at the same pixel as their previous vertex.
Afterwards, the line segment indices buffer has to be updated by adding only line segment
indices int(istartV , iendV) that refer to remaining vertices, which are not removed by the
stream compaction. This is executed in parallel per vertex by another compute shader
that writes only remaining line segment indices into the line segment index buffer. In
order to have access to the neighbors of vertices during the pixel data generation process,
the indices for predecessors iprevV and successors inextV are also stored per vertex. This
neighborhood information is necessary to generate 3D segment boxes without overlaps
with previous and next segment boxes and to determine the corner positions for the
different corner styles. To store the neighborhood information of polygon outlines, which
are closed lines, correctly, the last vertex index has to be stored as predecessor iprevV

of the first line vertex and the first vertex index as the successor inextV of the last line
vertex. Due to the stream compaction, the first line vertices are always the same but the
last line vertices may vary. A last line vertex is found if the next vertex, stored in the
pixel indices per vertex buffer, belongs to another line. If a last line vertex is detected,
the line start index stored during preprocessing per polygon outline is used to store the
predecessor and successor vertex indices accordingly.

During this update process, all vertices that are not already removed by the line sim-
plification, are also tested if they are inside the view frustum. The corresponding line
segment indices are only stored if at least one of the two vertices is inside. This prevents
line segments outside the visible area of the current view to be processed by the next
steps of the dynamic update and they are also excluded from the render process.

Unfortunately, the described view-dependent line simplification could not be integrated
properly into the target framework because of pre-existing interoperability problems
between the used APIs OpenGL and CUDA that we cannot fix. The pixel indices per
vertex buffer of Figure 4.3 is an OpenGL shader storage buffer, because its data are used
by OpenGL compute shaders to prepare the vertex index data for rendering, which is
also performed by OpenGL shaders. CUDA is used to execute the stream compaction
on the same data, which cannot be used properly by OpenGL afterwards, unless the
contents of the shared buffer are copied to another buffer afterwards, which is costly and
negates the benefits of the line simplification. A solution to this problem would be an
own implementation of the stream compaction to avoid the unique() operation of CUDA.
Since the implementation of a stream compaction goes beyond the scope of this thesis, it

53

4. Implementation Details

is a topic for future work.

Even if this line simplification cannot be applied, the view frustum culling is still executed
and can eliminate line vertices early in the visualization process. The line vertices can be
especially reduced in close-up views, where many vertices are outside the visible area.
Such a view frustum culling is not necessary for static decals because the render process
of static decals is reversed compared to the one for dynamic lines. The dynamic lines
approach is based on the line segments, which are passed to the pixel data generation
process, where it is determined which pixels they cover. The render process for static
decals starts with the individual pixels to which line segments and polygon parts are
assigned by checking all possible candidates located at the same decal grid cell. Thus,
all static decals corresponding to decal grid cells outside the view frustum are directly
omitted.

4.3.2 Pixel Data Generation

After sorting out the line segments outside the view frustum, the pixels covered by the
individual line segments have to be determined. To avoid checking all line segments per
pixel, the area which can be affected by a line segment is restricted first. Therefore, the
remaining 3D line vertices from the index update step are passed to a geometry shader,
which generates 3D boxes for each line segment to roughly limit their coverage area.
The 3D line segment boxes, shown in Figure 4.4a, enclose the terrain areas that can be
affected by the corresponding line segments. Thus, an affected area can be limited to
pixels inside a box and accurate point-in-line tests have to be executed only for those
pixels. These tests are performed in a fragment shader that stores all lines covering a
pixel in linked list for rendering.

3D Segment Boxes

The 3D segment boxes are defined by a width, height, and length, which are calculated
in parallel per line segment in a geometry shader. The width of the segment boxes
is determined by view-dependent scale factors of the two segment vertices. The scale
factors are defined by the distances of the vertices to the virtual camera and therefore
represent the minimum and maximum width of a line segment because the width changes
continuously between them. The concrete calculation depends on the projection type of
the virtual camera, which can be perspective or orthographic. In both cases the camera
field of view (FOV) and the distance between line and camera are taken into account
to get an appropriate scale factor at every location of the 3D scene. The FOV of the
camera defines the visible area of the current scene by an horizontal and vertical angle. In
Equation 4.1 the scale factor orthoScale is calculated for orthographic views by dividing
the camera zoom factor zoomc by the tangent of half of the longer side of the FOV,
which is indicated by FOVmax in the formula. The resulting term is then multiplied by
the tangent of half of the shorter side of the FOV, specified with FOVmin in the formula.
The zoom factor is determined by the distance between the virtual camera and its focus
point.

54

4.3. Dynamic Update

(a)

(b)

(c)

Figure 4.4: 3D segment boxes of semi-transparent dynamic lines generated (a) with a
corner offsets, which cause large overlapping areas and (b) connected with common miter
surfaces to avoid box overlaps. (c) The resulting line segments without overlaps between
line segments of the corresponding line.

55

4. Implementation Details

orthoScale = zoomc

tan
(

F OVmax
2

) · tan

(
FOVmin

2

)
(4.1)

One can see that this scale factor depends only on the current view and remains constant
for all positions on the screen. This is expected because with orthographic projection the
relative object sizes are preserved and the decals have to be scaled constantly without
perspective distortion. Therefore, the orthographic scale factor is calculated once per
view on the CPU and passed to the geometry shader and fragment shader that use the
same scale factor for the pixel data generation. The segment boxes are scaled constantly
with respect to the screen by multiplying the orthographic scale factor with a predefined
line width stored in a properties per line buffer.

The scale factor perspectiveScale cannot only be calculated for the end points of the
line segments and interpolated linearly, because the perspective distortion of perspective
views and the depth change of the terrain along a line segment are not linear. The
perspective scale factor has to be calculated for each reference point p on the line with
the formula of Equation 4.2. But, for the segment boxes only the maximum scale factor
of a line segment is used to ensure that the whole line segment is contained after its
perspective projection. The maximum scale factor of a line segment is determined by
the segment vertex furthest away from the camera, because the perspective scale factor
grows with the distance between the reference point p and the virtual camera c.

perspectiveScale = dist (p, c) · tan

(
FOVmin

2

)
(4.2)

To ensure that the terrain is included in the segment boxes, their minimum and maximum
height corresponds to the height range of the terrain. A small additional offset is used to
avoid segment boxes with zero height for flat terrains and to avoid z-fighting between the
boxes and the terrain surface. The length of a segment box corresponds to the segment
length plus an offset of half the scaled line width to include the gap at the corners. This
offset produces large overlapping areas at the corners of interior segments, which can be
observed at the semi-transparent 3D segment boxes in Figure 4.4a. Since a line should
affect a pixel at most once, overlaps of line segment boxes of the same line have to be
avoided. Therefore, a common front and back surface for two consecutive segment boxes
is determined. For this purpose, the miter vectors of the corners are calculated as for
the miter corner style described in Section 3.6 by using the predecessor and successor
vertex of the segment. The neighbor vertices are accessed with the indices iprevV and
inextV stored at the current vertex index position in the previous and next vertex index
buffers. A miter vector defines the orientation and influences the size of the touching
surfaces of the two adjacent boxes. In Figure 4.4b one can see that the use of these miter
surfaces prevents overlaps between the individual line segment boxes in world space and
reduces the overlapping areas in screen space.

56

4.3. Dynamic Update

A so generated segment box consists of eight vertices and with the optimization for fast
rendering of triangle strips by Evans et al. [ESV96], a triangle strip with fourteen indices
is generated in the geometry shader and emitted to the fragment shader. Besides the
vertices of the segment box, the corner positions for the miter or bevel corner styles are
also passed to the fragment shader if the dynamic lines should be displayed in one of these
styles. The miter vectors are already calculated for the miter surfaces of the segment
boxes and therefore only need to be passed. The bevel vectors have to be calculated
additionally, which is done the same way as for the static lines described in Section 3.6,
which are then also passed to the fragment shader.

Linked Lists

The fragment shader is not an ordinary fragment shader that writes pixel colors to an
output framebuffer, but instead stores the indices of all lines covering a pixel in a linked
list realized by three shader storage buffers, i.e., the pixel head, next line pointer, and
line data of pixels buffers of Figure 4.3. Therefore, the fragments corresponding to the
3D segment boxes from the geometry shader are further analyzed if they are part of the
line projected onto the terrain. This is done by point-in-line tests according to the corner
style by using the pixel center position and the line segment, which is defined by two
vertices, a scaled line width, and corner positions described in Section 3.6. Since the test
is done in world space, the pixel center position has to be projected back from screen
space to world space first. This is accomplished by using the terrain depth, which is
obtained from its depth texture at the screen-space pixel position.

For the round corner style, the two segment vertices and the scaled line width are required.
The predefined line width stored in a properties per line buffer is scaled by using the
scale factor of the current pixel that is calculated with the same equations as the scale
factor for 3D segment boxes by Equation 4.1 for orthographic views and by Equation 4.2
for perspective views. Instead of using the more distant line segment vertex, the distance
between the world-space pixel position and the camera is used to determine a correct
scale factor for every pixel. The scale factor is then used to scale the line width, which is
used to determine if a pixel lies inside the line segment. This is the case if the distance
between the world-space pixel position and the segment center line is smaller than half
the scaled width. Two point-in-triangle tests are necessary to determine if the world-space
pixel position is located inside a line segment in the miter corner style. Therefore, the
segment is divided into two triangles that are spanned by the two miter vectors of the two
segment vertices. The length of the miter vectors is also scaled by the view-dependent
scale factor. Three tests are performed for the bevel corner style. The first test checks
if a pixel lies inside the segment rectangle without the corner gap, the other two tests
are only executed if the pixel lies outside this rectangle to determine if it is part of
one of the two triangles at the bevel corners. The corner triangles are defined by the
segment vertices and their corresponding bevel vectors, calculated in the geometry shader.
The view-dependent scale factor is also used for this corner style to scale the segment
rectangles and the corner triangles appropriately.

57

4. Implementation Details

If the corner tests prove that a pixel is part of a line segment, the corresponding line
index iLine is saved by adding it to the linked list of this pixel, otherwise the pixel is
not covered by the line segment and the fragment can be discarded. Additional to the
line index iLine also its color colorLine, packed into an integer, is stored in the linked list
to reduce the number of memory accesses during sorting and rendering. Furthermore,
the storage of line colors per pixel can be used by an analytical anti-aliasing method to
adjust the transparency of individual colors per pixel, which is another topic for future
work.

Since the number of lines covering a pixel is not known in advance and the data are
stored in the corresponding shader storage buffer in parallel, an atomic counter is used
to count the number of already stored line fragments. The counter then determines the
index to the next free storage location by incrementing the fragment counter with an
atomicAdd() operation for every stored line data entry of a fragment. This procedure
can lead to a higher index than possible for the allocated line data buffer. The process is
stopped in this case to resize the buffer. To avoid frequent buffer resizing, it is enlarged
by one and a half times of the already counted line data entries. This resize process is
usually executed during the first frames and does not lead to noticeable waiting times.
After allocating enough memory to store all line data of all pixels, the data are stored
according to the atomic fragment counter at the next free memory location.

To be able to access all line data corresponding to a pixel during rendering, the individual
entries are connected by linked lists per pixel. The start of the list is indicated by a pointer
to the first list entry, called head. The pointer is represented by the index ipixelData

of the first list entry and is stored in a pixel head buffer per pixel. The pixel head
is updated for every new fragment of a line segment covering the pixel. Since every
fragment corresponding to a pixel writes to the same location in the pixel head buffer, an
atomicExchange() operation with the new and the previous pixel head is used to ensure
synchronous updates of the pixel head. The new pixel head is determined by the index
provided by the atomic fragment counter that points to the last processed line data. To
prevent losing the pointer to the previous line data stored in the old head, the old head
index is stored in the next line pointer buffer at the location where the new head points
to. The pixel head buffer, the next line pointer buffer and the line data of pixels buffer
represent the linked list containing all lines covering a pixel. The end of the linked list is
reached if the next line pointer points to the negative index −1, which is the initial value
for all elements of the buffer. Since the number of list entries is required for the sorting of
the linked list to determine the number of sorting passes, another atomic counter is used
to count the number of list entries per pixel nLinesOfP ixels. This information is stored in
the line count per pixel buffer.

The generated line data lists of individual pixels can be accessed during rendering by a
pixel index that refers to the pixel head ipixelData stored in the pixel head buffer. The
pixel head points to the first line data of pixels entry int(iLine, colorLine) of the list stored
in the line data of pixels buffer. The index ipixelData of the next line data entry is stored
in the next line pointer buffer at the same index as the current line data is stored. Before

58

4.3. Dynamic Update

Figure 4.5: The sorting process of a linked list with three entries in the line data of pixels
buffer with the corresponding line drawing orders d0−2. During the sorting process only
the data entries of the lines with drawing order 1 and 0 are swapped for a consistent line
drawing order and the pixel head and next line pointer stay the same.

the generated per-pixel linked lists are used for rendering, they are sorted in the last step
of the dynamic update process.

4.3.3 Line Sorting

After storing all lines that possibly contribute to a pixel in random order, they have
to be sorted to ensure a consistent line drawing order over all pixels. Only if all lines
have the same color and opacity, the sorting can be skipped and the dynamic lines can
be directly rendered. A selection sort is performed for each linked list as described in
Section 3.3.3. The sorting of all line data of a pixel is executed by a compute shader in
parallel for each list.

Figure 4.5 shows an example of a linked list with three entries in the line data of pixels
buffer, which are not stored in the drawing order d0−2 of their corresponding lines. The
first entry of the list can be accessed by the index stored in the pixel head buffer at the
pixel index location. All indices to the following line data entries are stored in the next
line pointer buffer and can be accessed by the index of the previous line data entry. The
next line pointer of the last list element contains only −1 to indicate the end of the list
and does not reference any data. To reduce the number of memory accesses it is avoided
to look up this last pointer in every sorting pass by using the number of list entries stored
in the line count per pixel buffer. The sort iterations are stopped after processing the last
line data entry if the number of list entries is reached. The line count per pixel buffer is
only accessed once before the sorting process and it is no longer necessary to look up the
next line pointer of the last list element in every sorting pass.

In the example of Figure 4.5 two list entries have to be swapped. This is done by re-sorting
the line data directly and not their references because this would cause an update of the
head and of two next pointers even in this simple example. The sorting procedure can
be executed in real time because the re-sorting is only done inside a linked list and no
expensive atomic operations are necessary. Furthermore, the overlaps between dynamic
lines are rather small and do not lead to linked lists with many entries. An unnecessary

59

4. Implementation Details

iteration through all list elements should still be avoided. Therefore, after each re-sorting,
it is tested if the combined color of all already sorted list elements corresponding to
different lines is already opaque. Then the sorting can be terminated and all other list
elements can remain unsorted because they are not used during rendering. The sorting of
the linked lists concludes the dynamic update process of dynamic lines and the prepared
line data can be passed on to the render process.

4.4 Rendering

The preprocessing and dynamic update have already prepared the vector data so that
the static and dynamic decals can be rendered efficiently. The render pass of the decals
is executed after rendering the terrain to be able to render the decals on it and to have
access to its color, depth, and normal textures.

4.4.1 Static Decals

The main steps of the render process for static lines and polygons and their inputs and
outputs are presented in Figure 4.6. The steps in blue are performed for both, lines and
polygons, the step in orange is only executed for lines, and the steps in green only for
polygons. The polygons are rendered in a separate render pass. Afterwards the outlines
are rendered over them.

The first step for both static decal types is the determination of the location of the
pixel center position on the decal grid in a certain cell. The detected grid cell is then
used to access all relevant line and polygon data of this cell. To accomplish that, the
terrain depth tdepth is obtained from its depth texture at the screen-space pixel center
position pixelss. This depth is used to project the pixel back from screen space to world
space. The world-space pixel position pixelws is then used together with the grid origin
and the cell size to determine the 2D grid index igrid with the Equation 4.3. The cell
index icell, which is necessary to access the line and polygon BVH data, can then be
calculated with the grid index and the grid dimension according to Equation 4.4.

igrid = floor

(
pixelws.xy − gridOrigin

cellSize

)
(4.3)

icell = igrid.x + gridDim · igrid.y (4.4)

If the determined cell index is negative or larger than the total number of grid cells, the
pixel lies outside the grid and is not covered by static decals. Such empty fragments can be
discarded. Otherwise, the grid cell index refers to all line segments segmentL(istartV , iendV)
and to all polygon indices ipolygon covering the grid cell. The cell index is also used to
access the line and polygon BVH data stored in shader storage buffer during preprocessing.

60

4.4. Rendering

Figure 4.6: The individual steps of the render process of static decals with their input
and outputs (gray). The steps that are performed for lines and polygons are highlighted
in blue, line-specific steps in orange, and polygon-specific steps in green. Dashed arrows
indicate a possible repetition of the steps.

Since the line and polygon BVHs contain all line and polygon candidates that may con-
tribute to the current pixel, they have to be traversed to determine the lines and polygons
that actually lie on the pixel. Frasson et al. [FEP18] use a stack-based algorithm for the
BVH traversal, which is reported to be faster by Áfra and Szirmay-Kalos [ÁSK14]. The
implementation of their algorithm is based on CUDA but since its usage combined with
OpenGL led to problems, we use a stack-less implementation with an OpenGL fragment
shader based on a while-loop.

All required data of the BVH nodes are accessed by the grid cell index icell as described
in Section 4.2.1. The BVH traversal starts with the root node and its corresponding
AABB, which is the merged AABB of all relevant line segments or polygon parts of the
detected grid cell. In a while-loop the BVH is traversed along the left child nodes as long
as the pixel lies inside the corresponding child node AABBs. Since the BVH is a fully
balanced binary tree, the left child node indices are determined by Equation 4.5, which
are used to access the node AABBs and the leaf node data. If the pixel does not lie inside

61

4. Implementation Details

of a node AABB, the whole sub-tree can be skipped and the traversal is continued at the
next unprocessed right node. For the case that the current node has a right sibling node,
it is the next unprocessed right node. Since the BVH is a fully balanced binary tree, all
left nodes have right sibling nodes. Left nodes can be detected by their indices because
they have odd node indices, so only the node index needs to be checked to determine if
a node has a right sibling. The node index of a right sibling can be simply calculated
by Equation 4.6. To find the next unprocessed right node starting at a right node it
is necessary to go up the tree with Equation 4.7 until a node is found that has a right
sibling.

leftChildIndex = 2 · parentNodeIndex + 1 (4.5)

rightSibling = leftNodeIndex + 1 (4.6)

parentNodeIndex = floor

(
childNodeIndex− 1

2

)
(4.7)

Since the the decal parts stored in the BVH leaf nodes may overlap, the BVH traversal
can end at zero or more leaf nodes. If no leaf node is found, the traversal is already
terminated at the root node because the pixel center position pixelws lies already outside
the AABB of the root node, which contains all lines or polygons stored in the BVH. If
a leaf node is reached, it refers to a line segment segmentL(istartV , iendV) or a polygon
index ipolygon that refers further to the corresponding quad-tree data prepared during
preprocessing and shown in Figure 4.2.

Static Lines

For all detected line segments segmentL(istartV , iendV) during the BVH traversal, point-
in-line tests are performed according to the set line style. The different corner styles
are handled the same as for the dynamic lines described in Section 4.3.2. The difference
is that for the static lines precalculated corner positions can be used for the miter and
bevel corner styles and do not have to be calculated continuously as for the dynamic
lines. Since the round corner style is based only on the distance to the center line of the
corresponding line segment, it leads to overlaps in the corner area of two segments of
the same line, as can be seen in Figure 4.7. To avoid that a line contributes twice to the
pixel color at this overlapping area, it has to be checked if there is already a line segment
of the same line that covers the current pixel. Only the line index of the previous line
segment has to be compared with the line index of the current line segment, because all
line segments of the same line are stored consecutively. This is a result of sorting the
segments according to their corresponding line drawing order. By comparing the line
indices of two consecutive segments, it can be determined if they belong to the same
line. In case the line has not yet been processed, it can be tested if the distance between

62

4.4. Rendering

(a)

(b)

Figure 4.7: Semi-transparent static lines with round corner style and (a) with overlapping
segments within a line and (b) without line segment overlaps, which are prevented by
checking whether the segments belong to the same line.

63

4. Implementation Details

(a) (b) (c)

Figure 4.8: A blue polygon with a wide black semi-transparent outline using the outline
modes (a) normal, (b) inset, and (c) offset. The inset and offset modes cause artifacts
because, due to the large width, the outline reaches the outside and inside of the
corresponding polygon, respectively.

the pixel and the line segment is smaller than half the line width to produce the desired
round corner style, as shown in Figure 4.7b.

For the outline modes inset and offset it is tested if the pixel is located to the left or
right of the outline. Since the winding order of the polygons is always the same, so is the
order of its vertices used for the outline and this left-right-test can be used to determine
if a pixel lies inside or outside the corresponding outline. The test delivers correct results
in most cases, but especially for wide outlines and thin polygons, this is not the case. In
Figure 4.8a one can see a blue polygon with a thick outline in normal mode. Figures 4.8b
and 4.8c show two cases where inset and offset outline modes produce visually unpleasant
results. For the inset mode this is caused by outlines of the exterior and interior polygon
that cover the whole exterior polygon and extend beyond it. The interior polygon is fully
covered by its outline in offset mode and it overlaps also the exterior polygon because it
is too wide. The correction of this behavior is a topic for future work and can currently
only be avoided by the use of thin outlines or by the normal outline mode.

After the execution of all line style tests the corresponding line color colorL(r, g, b, a) is
added to the pixel color colorpixel(r, g, b, a) with front-to-back compositing if the pixel
is detected to belong to a line segment. If the line color is opaque, the pixel color is
determined and no further steps are necessary. In case of transparent line colors, the
BVH is searched further for line segments covering the pixel. This search process is
terminated if the composited pixel color is opaque or the BVH is fully traversed.

Polygons

The BVH traversal provides polygon indices ipolygon that give access to the polygon
quad-tree data. With the quad-tree node offset istartNode provided by the quad-tree
culling process, the traversal of the polygon quad-tree can be limited to the sub-tree

64

4.4. Rendering

that is part of the detected decal grid cell. This sub-tree is also traversed by testing
the world-space pixel position pixelws against the AABBs of the quad-tree nodes until a
leaf node is reached. Such a quad-tree leaf node is then either fully inside, fully outside,
or partially inside of its corresponding polygon, which can be determined by the node
type tnode stored in the node type buffer. For the first two cases it can be directly
determined if the pixel lies inside the detected polygon or not. The third case leads
to an additional point-in-polygon test between the pixel and the leaf polygon, which
decides if the polygon covers the pixel or not. The segments segmentP (istartV , iendV)
of the leaf polygon are tested by using the common even-odd rule for point-in-polygon
tests [FVFH90]. The leaf polygons created during preprocessing avoid looping over all
segments of the whole input polygon for point-in-polygon tests and limit the number of
test iterations to the number of leaf polygon segments.

In the case a pixel is inside a polygon, it is necessary to check if there are interior polygons,
which correspond to the current decal grid cell and to the detected exterior polygon.
The interior polygons that fulfill these criteria are also stored in quad-trees and they are
traversed the same way as their corresponding exterior polygons. To deal with nested
interior polygons, the status of a pixel switches between inside and outside with every
positive interior polygon test. After all interior polygon candidates are tested and the
pixel is classified as inside, the corresponding polygon color colorP (r, g, b, a) is added to
the pixel color colorpixel(r, g, b, a) by front-to-back color compositing. The final pixel
color is determined the same way as it is done for static lines by traversing the BVH
until the end of the BVH is fully traversed or the composited color is opaque.

4.4.2 Dynamic Lines

The only data structures that are used for rendering of dynamic lines are the linked lists
containing the line data of all pixels sorted according to their drawing order. In the
fragment shader a look-up at the line count buffer is made to determine if the pixel has
a non-empty linked list and belongs to a line, otherwise the pixel can be discarded. The
pixel color of such pixels remains unchanged and corresponds to the terrain color. For
pixels covered by one or more lines, the pixel color is determined by the traversal of the
line list and front-to-back compositing of the corresponding line colors.

Before a line color is added to the pixel color it has to be checked, if a line already
contributes to the color. Despite the use of a common miter surface between line segment
boxes to avoid overlaps, it is still possible that lines are added multiple times to the
same pixel list. The 3D segment boxes do not overlap in world space, but if they are
not parallel to the virtual camera, they overlap in screen space. In Figure 4.4b one can
see these overlapping areas indicated by a darker line color. It cannot be avoided to
add segments of the same line to the pixel list during the pixel data generation step
because they are added in parallel. Since the list entries are already sorted according
to their drawing order, which is unique across all lines, all entries of the same line are
stored consecutively. Thus, only the previous list element has to be tested if it belongs

65

4. Implementation Details

to the same line. If this is not the case, the line colors are added to the pixel color with
front-to-back compositing until it is opaque or the end of the linked list is reached.

4.5 Anti-Aliasing
The final step of both screen-based visualization approaches, static and dynamic, is the
anti-aliasing of the decals. Anti-aliasing is applied before the decals are displayed on the
screen to prevent jagged edges at the transition from decal to terrain or to other decals.

For the anti-aliasing of static decals MSAA is used by activating OpenGL’s multisampling.
This anti-aliasing technique is performed during the render process and is based on the
detection of edges of geometric objects, where anti-aliasing is necessary. Only for pixels
corresponding to edges, multiple samples are taken and processed and not for all pixels,
such as for SSAA. This approach is not applicable to the screen-based decal rendering,
because no geometric objects are passed to the OpenGL render pipeline and the vector
data are only processed in the final render step in a fragment shader and are not available
for optimizations before. Therefore, it has to be forced that multiple samples are taken
at every pixel by using OpenGL’s per-sample shading. Through this process the MSAA
degenerates to SSAA, making it a less efficient method compared to MSAA applied to
geometric objects. But, it produces high quality anti-aliasing results for static lines and
as one can see in Figure 4.9a, MSAA is able to reduce the dashing effect produced by
very thin lines. It is a common problem that thin lines appear dashed if their widths
are getting smaller than a pixel. Anti-aliasing is one way to reduce this problem, but as
shown in Figure 4.9b, the used anti-aliasing method for dynamic lines cannot avoid this
dashing effect produced by thin dynamic lines.

MSAA can reduce this effect but it is not suitable for the pixel-based approach of the
dynamic lines, because the lines and their colors are stored per pixel and not per sample.
The storage of line data per sample can cause a massive memory overhead and a medium
MSAA taking eight samples per pixel would result in eight times the amount of video
memory required to store the data. Besides the high memory consumption, this large
amount of data would not only have to be stored during the pixel data generation process,
but also sorted and processed during rendering. This time-consuming processing of the
data can cause the dynamic lines to no longer be rendered in real time.

To avoid performance issues, a more efficient anti-aliasing approach is chosen, but
unfortunately it does not reduce the dashing effect as well as MSAA. The anti-aliasing
filter FXAA [fxa] of Nvidia is applied after the rendering of dynamic lines as a post-process.
It smooths the jagged line edges and leads to a low memory and time consumption.
The main problem of this approach are thin lines, because the lines are rendered with
the dashing effect without anti-aliasing and the anti-aliasing afterwards does not work
as good as the anti-aliasing of MSAA executed directly during rendering. Therefore,
pixels that are less than a pixel width away from a line are detected and classified as
line pixels to prevent lines from becoming narrower than a pixel. This correction process
is done by projecting the line segment vertices onto the image plane and the resulting

66

4.5. Anti-Aliasing

(a) (b)

(c) (d)

Figure 4.9: Blue polygons with thin black outlines appearing as dashed lines due to a
small line width. (a) Static outlines, (b) dynamic outlines, (c) dynamic outlines with
correction, and (d) dynamic outlines with a larger width.

67

4. Implementation Details

screen-space positions are used for a distance test between the pixel center position and
the line segment defined by the screen-space vertices. If this distance is smaller than
half a pixel, the line covers the pixel and is assigned to its linked list. In Figure 4.9b
and 4.9c one can see the comparison of dynamic outlines with the same width, without
and with the correction applied. The problem with this correction is, that it does not
consider the depth of a pixel and would therefore detect pixels as covered, even if the
corresponding line is occluded by the terrain. To prevent lines from appearing on the
terrain if they are behind, the correction of thin lines is only applied in top-down views.
The use of larger line widths, as in Figure 4.9d, is suggested to avoid dashing artifacts in
other views. Thöny et al. [TBP17] use a second-depth anti-aliasing method proposed by
Persson [Per12] to prevent lines from becoming thinner than a pixel. The method uses a
second depth buffer for silhouette detection, which can be considered for future work.

68

CHAPTER 5
Evaluation

To analyze the strengths and weaknesses of the proposed vector data visualization method,
it is applied in real-world use cases of a flood management system. Eight different case
studies are utilized, which are introduced and described in more detail in the next
section. Afterwards, the results of performance tests on time and memory consumption
are presented and different influence factors are discussed.

5.1 Case Studies

The eight case studies are chosen to cover different aspects, such as the expansion area,
the size, and the application of the vector data. Detailed information about the number
of interior and exterior polygons and the number of lines can be found in Table 5.1. The

Polygons Lines Total
Exterior Interior Total

HORA IL 19 1,605 1,624 1,624 3,248
Cologne OSM 7,749 856 8,605 43,985 52,590
Wachau 21,710 2,327 24,037 6,307 30,344
Graz SC 92,268 31,380 123,648 29,111 152,759
HORA RLL 22,330 659 22,989 2,747 25,736
Cologne SA 446,321 276 446,597 652,334 1,098,931
HORA FA 22,998 116,296 139,294 116,317 255,611
HORA RC 63,397 659 64,056 41,079 105,135

Table 5.1: Numbers of different decal types per case study. The smallest and largest
numbers among all case studies are highlighted in blue and red, respectively.

69

5. Evaluation

Figure 5.1: The case studies HORA IL (top) and Cologne OSM (bottom).

70

5.1. Case Studies

Polygons Lines Total
Exterior Interior Total

HORA IL 53,833 69,178 123,011 123,011 246,022
Cologne OSM 185,720 18,686 204,406 227,219 431,625
Wachau 328,924 20,445 349,369 114,612 463,981
Graz SC 2,471,650 330,945 2,802,595 1,460,434 4,263,029
HORA RLL 904,271 61,666 965,937 4,802,375 5,768,312
Cologne SA 6,228,849 2,982 6,231,831 4,690,521 10,922,352
HORA FA 2,437,857 8,268,962 10,706,819 9,790,961 20,497,780
HORA RC 15,067,576 61,666 15,129,242 14,213,384 29,342,626

Table 5.2: Numbers of vertices per decal type and case study. The smallest and largest
numbers among all case studies are highlighted in blue and red, respectively.

line numbers include the number of all lines and polygon outlines. One can see that
the case studies differ in the ratio of different decal types and this variation enables the
analysis of the visualization methods based on the distribution of the types. A major
factor that influences performance is the data complexity, which is mainly determined
by the number of vertices. In Table 5.2 their distribution over all case studies is listed.
The case studies are sorted according to the number of vertices and this order is used for
the whole chapter. The first three case studies contain smaller data sets with less than
500,000 vertices. They are followed by two case studies with medium sized data sets
with less than 6 million vertices and three large case studies with more than 10 million
vertices each.

The vector data of the case studies have different sources and represent different objects.
The data are grouped accordingly to be able to individually manipulate the visualizations
with different settings for the used data structures and the applied styles. Table 5.3
shows the distribution of data groups with their characteristics for each case study. A
data group either contains polygons with outlines, polygons only, or lines only, which
determines the number of draw calls. Since polygons and lines are rendered in separate
draw calls, two render passes are executed for data groups that contain polygons with
outlines and otherwise only one draw call is required. The table also contains information
about the color settings for the individual data groups, because it is an influence factor
for both, the volume-based and the screen-based approach. It shows the numbers of draw
calls that apply individual colors to lines and polygons. The other draw calls use only
one color for all lines and one color for all polygons.

5.1.1 HORA Isolines (IL)

In this case study vector data from Natural Hazard Overview & Risk Assessment Austria
(HORA) 3 [hor] are utilized to visualize maximum water depths via blue polygons with
black outlines. HORA is a warning service of the Federal Ministry of Agriculture, Regions

71

5. Evaluation

Figure 5.2: The case studies Wachau (top) and Graz SC (bottom).

72

5.1. Case Studies

Draw Calls Data Groups Individual Colors
P+O P L Total P L Total

HORA IL 2 1 - - 1 - - -
Cologne OSM 3 - 2 1 3 2 1 3
Wachau 3 - 1 2 3 1 1 2
Graz SC 9 1 2 5 8 3 5 8
HORA RLL 3 - 1 2 3 - - -
Cologne SA 6 1 2 2 5 2 1 3
HORA FA 4 1 1 1 3 1 - 1
HORA RC 4 1 1 1 3 1 - 1

Table 5.3: The number of draw calls, the number of data groups, and the number of data
groups that use different colors per case study and for polygons with outlines (P+O),
polygons only (P), and lines only (L). The smallest and largest total numbers among all
case studies are highlighted in blue and red, respectively.

and Tourism for natural disasters in Austria. One application for the visualization of
the Austria-wide HORA 3 data is the comparison with earlier HORA data to identify
differences in simulation results. The case studies HORA IL and HORA flood areas (FA)
are the only ones that have more interior than exterior polygons. Although the number
of polygon types is very different, the number of vertices is not. This is caused by the
higher complexity of the exterior polygons compared with the interior polygons, which
can be seen in Figure 5.1 (top). Since the case study is the only one that contains a
single data group with polygons with outlines, it is also the only case study with the
same number of polygon and line vertices. Furthermore, HORA IL is the smallest case
study with respect to the total number of decals and vertices.

5.1.2 Cologne OpenStreetMap (OSM)

The Rhine flows right through Cologne, which makes the city vulnerable to flooding.
Two of the case studies deal with data of Cologne, one smaller and one larger case
study. They are chosen because they represent typical use cases for flood management
in urban environments. Cologne OSM is the smaller case study because it has less
vector data and covers a smaller area. The used vector data are open data provided by
OpenStreetMap [osm] that contain information about land use, water and road networks.
An overview is shown in Figure 5.1 (bottom). One can see that individual colors are
used to indicate different land use, water, and road types. Together with the Cologne &
Surrounding Area (SA) case study, they are the only case studies that contain more lines
than polygons, whereby the line number of the Cologne OSM case study is determined
by lines only and the Cologne SA case study also contains polygon outlines.

73

5. Evaluation

Figure 5.3: The case studies HORA RLL (top) and Cologne SA (bottom).

74

5.1. Case Studies

5.1.3 Wachau

The Wachau is an area in and around the valley of the Danube in Lower Austria, which
makes the Danube a flood risk for this area. For the analysis of this risk, vector data
of OpenStreetMap [osm] are utilized. This case study represents a typical vector data
set of a rural environment in which flood management is performed. It contains only
lines and polygons without outlines. As most case studies the Wachau case study has
more polygons than lines. With 114,612 line vertices, it contains the fewest number
of line vertices among all case studies. This is caused by lines that are only used to
represent administrative borders and the road network, which is not so dense in this
area. Polygons are used to visualize a larger amount of data to represent the land use.
Figure 5.2 (top) shows the case study with lines in different colors to distinguish the road
types and polygons in different shades of green to represent the land use types.

5.1.4 Graz Sewer Catchments (SC)

The Mur river flows through the city center of Graz and it can be seen in the upper
part of Figure 5.2 (bottom). The Graz SC case study has eight data groups, which is
the highest number of all case studies and leads to a dense occurrence of decals. The
groups contain sewer catchments, land use, rivers, lakes, and the road and rail network of
Graz. The sewer catchments, given as polygons with outlines, encircle the area in which
all surface water runs off to the same sewer inlet, which can be precomputed from the
terrain topology. In Figure 5.2 (bottom) these polygons are colored in different shades of
magenta to be able to distinguish the individual sewer catchments. This can be helpful
to asses the risk of a drain to overflow. Individual colors are also used for four further
data groups in this case study, to highlight data relevant aspects, such as road types.

5.1.5 HORA River Lines & Lakes (RLL)

This case study shows rivers and lakes of the whole of Austria by using detailed data of
HORA [hor]. Lakes are represented by polygons without outlines and rivers by lines. In
Figure 5.3 (top) one section of the Austrian-wide vector data is shown, including a part
of Lower Austria, Vienna, and the upper part of Burgenland with Lake Neusiedl. Due to
the large scale of this case study, it is desirable to have lines that are still visible if they
are viewed in overview and that it is still possible to perceive the detailed flow of a river
in close-up views. Therefore, this case study is a good application of the dynamic line
visualization approach because it fulfills these requirements. Although the data are very
complex, there is also a lot of empty space. There are many rivers all over Austria, but
their coverage is relatively small compared to the whole area of the country.

5.1.6 Cologne & Surrounding Area (SA)

This case study covers with more than a million decals an area of 100× 100 km2 in and
around Cologne. This makes it the largest case study regarding the number of decals with
a high density. It contains five data groups with information about land use, building

75

5. Evaluation

Figure 5.4: The case studies HORA FA (top) and HORA RC (bottom).

76

5.2. Results & Discussion

footprints, water, and roads. Together with the HORA River Catchments (RC) case
study, they are the only ones that use a transfer function for continuous color mapping.
The transfer functions produce many different colors, which are particularly expensive
for the volume-based approach. In the Cologne SA case study a transfer function is used
to map the ground area of buildings to the filling color of their corresponding polygons.
The zoomed-in area of Figure 5.3 (bottom) shows a large building in red, a medium-sized
building in orange and smaller buildings in different shades of green. Different colors are
also used to differentiate land use and road types in Cologne and surrounding area.

5.1.7 HORA Flood Areas (FA)

In Figure 5.4 (top) one can see the flood area data of Vorarlberg and partially Tyrol
provided by HORA [hor] (not calibrated, preliminary results). The data are categorized
into three intensities, which are visualized in different colors: yellow, orange, and red.
They show the probability of a flood occurrence every 30, 100 or 200 years. The flood
areas are very complex and jagged polygons without outlines. There is a lot of empty
space between the flood areas, but despite their low coverage, the data have a high
complexity with respect to the number of vertices. HORA FA is the case study with
the highest number of interior polygons and the most interior polygon vertices. If the
case study is compared with the case study Cologne SA, they differ in data complexity
because HORA FA contains almost twice as many vertices and has less than a quarter of
the decals in Cologne SA.

5.1.8 HORA River Catchments (RC)

River catchments represent areas around a river, where all the landed water on this area
reaches a corresponding river point. This means the border between river catchment areas
assigned to different rivers are watersheds. In Figure 5.4 (bottom) the river catchments
of the whole of Austria are visualized as polygons in shades of blue with white outlines to
highlight the borders. The polygons are color coded by using a transfer function to map
the polygon filling color according to the size of the catchment area. This case study
has almost 30 million vertices, making it the case study with the most vertices in total.
The data also provided by HORA [hor] cover the whole area of Austria with more than
80,000 km2. These dense river catchment areas also overlap with other decals contained
in this case study, which are lakes and borders.

5.2 Results & Discussion

In this section the new screen-based approach is compared with a volume-based approach.
The differences in time and memory consumption of polygons, static, and dynamic lines
are further analyzed under different influence factors. The results are divided into sections
according to the decal types that are affected by the test factors.

77

5. Evaluation

(a)

(b)

(c)

Figure 5.5: Comparison of a volume-based approach in beige with the new approach with
static lines in blue and dynamic lines in red, under the aspects (a) GPU memory in giga-
bytes (GB), (b) update time in minutes (min), and (c) render time in milliseconds (ms).

78

5.2. Results & Discussion

5.2.1 Test Settings

The tests are performed on an Intel Core i5-8600K with 3.6 GHz and 32 GB RAM, and
an Nvidia GTX 1070 Ti graphics card with 8 GB memory. To ensure reproducibility
and comparability, the same starting view within a case study is used for all test cases.
Afterwards, the same number of samples is taken by zooming in, to consider the zoom-
dependency of the new screen-based approaches. For the anti-aliasing of static decals
a medium MSAA with eight samples per pixel is applied. The value of the following
influencing factors is also set to be constant for all tests and is only changed for testing
their own influence. A full HD image resolution with 1920× 1080 pixels is used for all
test cases. A resolution of 500× 500 cells is set for the decal grid of static decals. The
depth of the polygon quad-trees and their leaf capacity is constantly limited to eight.

5.2.2 All Decal Types

The decal types include volume-based decals, static, and dynamic screen-based decals.
In the following sections the results of performance tests for different decal types are
presented and their differences and influence factors are discussed.

Comparison with Volume-Based Technique

The vector data of all eight case studies are visualized with different approaches. Figure 5.5
contains the different performance results of the three approaches, i.e., the volume-based
approach and the new screen-based approach with static and dynamic lines. It reveals
that the GPU memory and the preprocessing time of the new approaches grow with the
amount of vector data, while the volume-based approach is more irregular. This can
be explained with the different influence factors that affect the results of the individual
approaches.

The main factor for all approaches is the amount of vector data, but besides this factor,
the volume-based approach is mainly influenced by the number of different colors. It
is necessary to group the decals according to their colors to be able to render them
separately. This is memory- and time-consuming and case studies with many color
variations stand out with their high memory usage and long runtimes. Since the case
studies Cologne SA and HORA RC use transfer functions to map continuous colors onto
the decals, they have the most color variations. This is the reason why they need the
most memory, update and render time, if the volume-based approach is used.

The static screen-based approach relies also on the resolution of the decal grid and the
polygon quad-trees. The dynamic approach depends also on the terrain grid resolution
and the image resolution. These additional influence factors for the new approaches do
not show a significant effect on the results as the different colors for the volume-based
approach do. This is because they are consistent over all case studies, only the terrain
grid resolution varies. The minimum cell size of the terrain grid lies under twenty meters
for all case studies, except for Cologne SA, where a flat terrain with a minimum cell
size of one kilometer is used. This size is taken to determine the sample rate of the

79

5. Evaluation

dynamic lines on the terrain grid. Since the sampling is the main preprocessing step for
the dynamic lines, it explains why the preprocessing for the Cologne SA case study is
very fast, although a lot of data are present.

According to the results presented in Figure 5.5a the volume-based approach has a higher
GPU memory consumption than the new screen-based approaches in all case studies.
This is expected, because for the volume-based approach a 3D mesh has to be stored for
each decal. Such a mesh consists of two polygon surfaces to close off top and bottom and
additional triangles to close the sides. Storing these meshes requires more memory than
is necessary for the screen-based approach. For the static variant only 2D vertices and
light-weight index-based data structures have to be stored. The dynamic variant requires
3D vertices and also an index-based data structure.

Figure 5.5b shows that the approach with dynamic lines needs less time for preprocessing
than other approaches. It is faster because the main preprocessing step is the sampling
of lines on the terrain and this is done mostly in parallel on the GPU. Furthermore, for
the dynamic lines it is not necessary to generate 3D meshes or static data structures,
which also saves time. For 5 out of 8 case studies, the static approach has an higher
preprocessing time than the volume-based approach. The main reason for this is the high
number of decal grid cells, although they are processed in parallel on the CPU, they still
lead to long waiting times. Another reason for the high update time is the generation of
the tree-structures, which is not done in parallel. This effect is particularly noticeable if
much vector data has to be stored per decal grid cell, which leads to large BVHs and
polygon quad-trees.

In Figure 5.5c one can see that for the small case studies the volume-based approach
is faster but for larger vector data sets the new approach outperforms it. The great
advantage of the volume-based approach is that the rendering of 3D meshes is highly
supported by modern graphics hardware. So this approach can use hardware-accelerated
rasterization and per-fragment tests for a fast rendering of decals. Even though these
performance advantages can be exploited, the approach is limited, especially if different
colors are applied. The volume-based approach needs several seconds to render the data of
three case studies, where the time bars are cut-off in Figure 5.5c. The loss of interactivity
is caused by the use of many different colors. Since the volume-based approach groups
the decals per color to render them in separate passes, this leads to a huge number of
draw calls and a high render time. The screen-based approach cannot take advantage of
hardware support such as the volume-based approach, because it is based on 2D vector
data that are processed per pixel and are not sent through the hardware-supported render
pipeline. This leads to a constant overhead, which is noticeable particularly in the smaller
case studies of Figure 5.5c.

With the new screen-based approaches, the vector data of all case studies are visualized
at interactive frame rates. An important factor for the runtime of both new approaches is
the density of the vector data. There is a high number of decals with a very high density
in the Cologne SA case study, which leads to many decals stored in the same grid cell
or stored in one linked list, depending on the used line visualization method. For static

80

5.2. Results & Discussion

lines this leads to large BVHs that correspond to these dense cells and their traversal
during rendering is more time consuming than the traversal of smaller BVHs of sparse
vector data. HORA RLL and HORA FA are both case studies with a low density of
decals. This is one reason for the faster render time compared to case studies containing
less vector data. An additional reason for the HORA RLL case study to be rendered
relatively fast is that it contains more line vertices than polygon vertices and lines are
rendered faster.

Percentage Distribution

The HORA IL case study is utilized to evaluate the percentage distributions of GPU
memory, update, and render time for different decal types of the new approaches. This
case study has the advantage that it only contains polygons with outlines, which leads
to the same number of polygons and lines. Furthermore, there is a similar number of
vertices of interior and exterior polygons, even if the number of interior polygons is much
higher than the number of exterior polygons.

In Figure 5.6a the percentage distributions of exterior and interior polygons and static
outlines are shown. One can see that static lines and polygons require similar amounts
of GPU memory, although their data and data structures differ. All outlines for exterior
and interior polygons and exterior polygons themselves are organized in BVHs. Interior
polygons are not stored in BVHs, which is the reason why they have a lower memory
consumption than exterior polygons. This leads to more line data stored in BVHs than
polygon data. Lines additionally require memory to store line width and corner style
information. This higher memory consumption of lines is compensated by polygons
through the storage of additional quad-tree data.

The update time is highly dependent on the vector data, i.e., their complexity and
density determine how long it takes to generate BVHs for lines and polygons and polygon
quad-trees. In the HORA IL case study the main difference in preprocessing time between
lines and polygons is caused by the polygon quad-tree construction. Especially the leaf
node polygon generation is time-consuming. This is the reason why polygons make up
almost all the update time. In cases with a higher density of line data, the update time of
lines would account for a larger percentage. The preprocessing time could be considerably
reduced by a parallel implementation of the tree structure generation on the GPU to
reduce the workload of the CPU.

Polygons have a higher render time than lines because point-in-line tests can be executed
more efficiently than point-in-polygon tests. Only one line segment has to be checked
per point-in-line test but for point-in-polygon tests all edges of the leaf polygon are used.
Another reason why lines are rendered faster is that the line BVHs directly store line
segments at their leafs, but polygon BVHs store quad-trees. This means for polygon
rendering two tree structures, a polygon BVH and a quad-tree, have to be traversed
to find a candidate for the point-in-polygon test. Although the implemented quad-tree
culling shortens the traversing of the tree, it still leads to an additional render overhead.

81

5. Evaluation

(a) (b)

Figure 5.6: Percentage distributions of GPU memory, update time, and render time for
exterior polygons, interior polygons and for (a) static and (b) dynamic lines.

The rendering of interior polygons is faster because they are not organized in BVHs, but
assigned to exterior polygons. Therefore, the BVH is only traversed for exterior polygons
and interior polygons are only checked after a positive exterior polygon test.

Figure 5.6b presents the percentage distributions of exterior and interior polygons and
dynamic lines. It shows that dynamic lines have a higher GPU memory consumption
than polygons and therefore also a higher memory consumption than static lines. Even
though memory can be saved because dynamic lines do not require static data structures,
the pixel-based approach is memory-intensive. On the one hand this is caused by storing
data per pixel, which are usually a lot to get a certain image quality. On the other hand it
is caused by increasing the line data resolution by sampling the initial lines on the terrain
grid. This results in much more vertices and by adding the terrain height information,
3D vertices have to be stored instead of 2D vertices, as for static lines. The size of the
per-pixel data could be reduced by the line color values, because it does not have to be
stored per pixel. Since the color changes only per line, the storage per line would be
sufficient, but at the cost of runtime. Many memory accesses would be necessary during
line sorting and also at the final render pass, which are reduced by the current approach.

The percentage contribution of dynamic lines to the update time is very small because
no static data structures have to be generated. Furthermore, the sampling of lines on
the terrain is done mostly in parallel on the GPU, which is fast and also contributes to
the short update time.

Figure 5.6b suggests that dynamic lines are rendered much faster than static decals,
which can occur but is generally not the case. The dynamic lines are faster in smaller case
studies and slower in case studies with many line vertices. For static lines the number of
lines that contribute to a pixel are limited to the lines inside one decal grid cell. The
dynamic lines are only limited to the line segments that are inside the visible area defined
by the view frustum for which all vertex indices have to be updated dynamically. This
task highly depends on the number of vertices and also leads to a higher render time
particularly for scenes where all lines are visible. The render times of dynamic lines are

82

5.2. Results & Discussion

Figure 5.7: The average render overhead of each decal type, i.e., polygons, static lines,
and dynamic lines, if all decals are outside the visible area.

also more variable because they are not limited to a fixed grid cell size. The lines grow in
world space when zooming out, resulting in more overlaps between the lines and slower
render time. Dynamic lines are, additionally to zooming, sensitive to several influence
factors, such as line density, width, color, and transparency.

Render Overhead

The new screen-based approach produces more render overhead than a volume-based
approach. The three case studies Graz SC, Cologne SA, and HORA RC are utilized to
analyze this overhead, because they contain an increasing amount of vector data while the
number of data groups and draw calls decreases from case study Graz SC to HORA RC.
Thus, it can be evaluated if the amount of data or the number of draw calls has more
impact on the overhead.

A reason for the larger render overhead of screen-based approaches is that they cannot
make use of hardware-supported early discards of decals that are not visible. The decals
are processed by using dynamic branching, which causes an additional render overhead.
To prevent dynamic lines from being processed if they are outside the visible area, an
additional view frustum culling step is executed before they are rendered. If all lines are
outside the view frustum, only this step is carried out. Figure 5.7 depicts the render
times for all polygons and lines being outside the visible area and therefore it shows the
time that is necessary for the culling step of dynamic lines. This step is done in parallel
on the GPU and in Figure 5.7 one can see, that the execution of the view frustum culling
depends more on the number of vertices than on the number of data groups, because the
time consumption grows with the number of vertices.

There is no such additional step for static decals to check if they lie inside the visible
area before they are rendered. During the render pass the pixel has to be projected back
into world space by using the terrain depth. This pixel position is then used to determine
the corresponding decal grid cell. The pixel can only be discarded if the world-space
pixel position lies outside the decal grid. The render overhead produced by looking up
the terrain depth and decal grid grows with the number of draw calls. This can also be

83

5. Evaluation

Figure 5.8: Render times of thirty consecutive frames while zooming in for polygons,
static and dynamic lines in two case studies.

observed in Figure 5.7, which reflects that the case studies Graz SC, Cologne SA, and
HORA RC execute nine, six, and four draw calls respectively, where the first case study
makes six draw calls for lines and three for polygons and the other two case studies have
the same number of draw calls for lines and polygons.

Zoom Dependency

The render times of the static and dynamic approach are zoom-dependent. In Figure 5.8
the render times of all three decal types for 30 consecutive frames while zooming in
are shown. The two case studies are chosen due to their large extent and vector data
density, which are properties that are expected to amplify the effect of zooming on render
performance. The visible decrease in render time for polygons and static lines is mainly
caused by decals covering more pixels while zooming in. This avoids a full traversal of
BVHs for empty pixels, because the search for decals only stops, if a pixel is completely
opaque. The results show that the traversal of the BVHs is a decisive factor for the
runtime of static decals. The use of a different data structure or the optimization of its
traversal and its look-ups are possibilities to further improve the render performance.
Another reason for a shorter render time if zooming in, can be complex decals that move
outside the visible area and do not need to be processed anymore. Since polygons are
usually more complex and consist of more vertices, their render time is more affected
by this effect than static lines are. This is also visible in Figure 5.8 where the polygon
runtime is decreasing more with an increasing zoom factor.

The results reveal that the zoom factor has an higher impact on the runtime behavior of
dynamic lines than on static decals. The reason for the render time decrease for dynamic
lines is different, because zooming in leads to thinner lines with less overlaps between
adjacent lines. Therefore, less data has to be stored per pixel in linked lists. This reduces
the time that is necessary to dynamically generate the linked lists, to sort and to go
through them for the final line rendering. This effect is clearly visible for the two case
studies of Figure 5.8, which contain dense line data that produce many overlaps. For use
cases with sparse line data and with a small line width, this effect will probably not be

84

5.2. Results & Discussion

(a) (b)

Figure 5.9: The percentages of the total render time that are used for anti-aliasing (gray)
with (a) MSAA and (b) FXAA. The rest of the render process is shown in blue for static
decals and red for dynamic lines.

noticeable.

Anti-Aliasing

Different anti-aliasing techniques are utilized for static decals and dynamic lines. This
section shows the influence of the anti-aliasing methods on the runtime of case studies
HORA IL, HORA RLL, and HORA RC. The three case studies are chosen to be able to
analyze the percentage of render time that is used for anti-aliasing of a small, medium,
and large case study. Furthermore, with the HORA RLL and the HORA RC case studies
the influence of a low and a high decal coverage can be tested.

For anti-aliasing of static decals OpenGL’s multisampling (MSAA) is used, which makes
up a large part of the render time for all case studies of Figure 5.9a. On average
77 % of the total render time is consumed by anti-aliasing for polygons and static lines.
The reason for this high time consumption is that for the screen-based approach the
optimization of MSAA is not applicable and it turns into SSAA. MSAA has to detect
pixels at edges where anti-aliasing is necessary to be able to reduce the number of samples
for other pixels. This is not possible, because the vector data are only processed in the
final render step and are not available for optimizations before. To still be able to apply
anti-aliasing to the static decals, multiple samples are taken and processed for all pixels
by enforcing per-sample shading. The percentage of render time used for MSAA varies
only slightly between the case studies, which means it grows with the render time and
the decal coverage and varies between 12 and 30 ms for the tested case studies. To
speed up the render performance of static decals an analytical anti-aliasing method or
a post-processing anti-aliasing filter could be applied instead of the MSAA. Whereby
other drawbacks need to be considered, such as more complex per-pixel calculations and
a worse anti-aliasing result.

For anti-aliasing of dynamic lines the post-processing filter FXAA [fxa] is applied. It
does not provide such a high quality anti-aliasing than MSAA but it is much cheaper.

85

5. Evaluation

(a)

(b)

(c)

Figure 5.10: The influence of different resolutions of the decal grid on (a) GPU memory,
(b) update time, and (c) render time of static decals.

86

5.2. Results & Discussion

(a) (b)

Figure 5.11: An upscaled area of interior polygons with black outlines. (a) Static outlines
with MSAA (top) and without MSAA (bottom). (b) Dynamic outlines with FXAA (top)
and without FXAA (bottom).

Figure 5.9b shows that FXAA makes up only 6 % of the total line render time on average.
For smaller vector data sets such as used in HORA IL the percentage increases, because
the rendering itself is faster. The execution time of FXAA is relatively constant and
takes only 0.3 ms on average. Figure 5.11 shows upscaled interior polygons with black
outlines of the HORA IL case study. In Figure 5.11a one can see a comparison of static
outlines with and without MSAA and Figure 5.11b shows the difference of applying and
not applying FXAA to the dynamic outlines.

5.2.3 Static Decals

The results presented in this section only concern polygons and static lines. They show
the influence of changing parameters for the static data structures. These include different
resolutions for the decal grid and different settings for polygon quad-trees, such as the
leaf capacity and the maximum tree depth.

Decal Grid Resolution

The grid resolution has a great impact on the visualization process of static decals,
because it determines the amount of vector data that is stored per decal grid cell. Using
a higher grid resolution means the vector data are distributed over more cells and the
corresponding BVHs for lines and polygons.

87

5. Evaluation

(a)

(b)

(c)

Figure 5.12: The increase of the leaf capacity of polygon quad-trees leads to different
results for (a) GPU memory consumption and the time necessary for (b) updating and
(c) rendering polygons.

88

5.2. Results & Discussion

With a higher grid resolution the total number of BVHs grows. This results in a higher
memory consumption because more bounding boxes and references to polygons and line
segments have to be stored. The GPU memory consumption slightly increases with a
higher grid resolution, as shown in Figure 5.10a. Since the data are mostly index-based,
the impact of the grid resolution on the memory consumption is relatively small.

The grid resolution has a greater impact on the update time, which can be observed
in Figure 5.10b. This is a result of the data processing that takes place in parallel per
cell on the CPU. With a growing number of cells, more threads need to be queued,
which leads to longer waiting times. If a cell is empty, it can be skipped immediately,
which releases resources for other cells to be processed. For case studies with high decal
coverage and therefore few empty cells, the per-cell processing becomes a performance
bottleneck. The preprocessing of all case studies takes less than eight minutes, even for a
high grid resolution, except the case study HORA RC requires a higher preprocessing
time. Since the preprocessing of this case study with a grid resolution of 1000× 1000
takes more than half an hour, the preprocessing was cancelled, which is the reason why
Figure 5.10 does not include the results for this setting.

The grid resolution relates to the amount of vector data that is referenced per cell and it
also influences the size of the polygon and line BVHs. A higher grid resolution results in
smaller BVHs and the render time decreases due to a faster traversal. In Figure 5.10c one
can see that the increase in grid resolution leads to a faster rendering for all case studies,
but especially for Cologne SA and HORA RC. The vector data of these case studies
are very dense and thus they benefit the most from dividing it further into several cells.
For smaller case studies and case studies, where the data are spread out, a higher grid
resolution has a smaller impact on runtime. A medium decal grid resolution of 500× 500
is recommended because it offers a good trade-off between update time and runtime.

Quad-Tree Leaf Capacity

The leaf capacity determines the maximum number of polygon edges that can be stored
per leaf node in the polygon quad-tree. The higher the leaf capacity, the more edges are
allowed and the less often the quads have to be split. Therefore, a higher leaf capacity
leads to smaller quad-trees, but also to more data stored per quad-tree leaf. Especially
complex polygons consisting of many edges are strongly affected by this parameter.

The smaller the polygon quad-trees are, the fewer nodes they contain and the less GPU
memory is required to store their data, such as node bounding boxes. There is a reduction
of memory consumption for an increasing leaf capacity, as shown in Figure 5.12a. While
the number of leaf nodes and therefore the number of leaf polygons is reduced, the
number of edges per leaf polygon grows with the leaf capacity. But, the total number of
edges of all leaf polygons is getting smaller. This is caused by less edges that need to be
added to close the leaf polygons on the node boundaries.

Figure 5.12b shows that for a higher leaf capacity the time that is necessary to preprocess
polygon data is getting shorter. Especially for the HORA RC case study, the capacity

89

5. Evaluation

(a)

(b)

(c)

Figure 5.13: The impact of the maximum depth for polygon quad-trees on (a) GPU
memory, (b) update time, and (c) render time of polygons.

90

5.2. Results & Discussion

has a great influence on the update time. This is caused by the high complexity of its
vector data and the generally higher preprocessing time, which is further increased by
the capacity. As a result of a non-parallel quad-tree generation, the time necessary for
construction is much shorter for a high leaf capacity and small quad-trees. Furthermore,
fewer leaf polygons have to be constructed with a higher capacity, which also saves time.

The drawback of a high leaf capacity is that having more edges in one quad-tree leaf
leads to a higher runtime. As a result of more complex leaf polygons, the execution
time for the point-in-polygon tests during rendering increases because more edges have
to be tested. The extent of the impact on render time is presented in Figure 5.12c. It
also shows that a leaf capacity of two and eight hardly makes a difference for most case
studies, because the leaf polygons may have a similar number of edges again after adding
the closing edges. To avoid long render times and to maintain interactivity the leaf
capacity should not be too high. Therefore, a leaf capacity between 8 and 32 is suggested
to avoid unnecessary memory and update time consumption with a lower capacity.

Quad-Tree Depth

Using the leaf capacity would be enough information to construct all polygon quad-trees
according to the number of polygon edges. The result are quad-trees with different depths
according to the complexity of the corresponding polygon. This can lead to very deep
trees, which are not desired because they need a lot of memory and time resources. Deep
trees have a long construction time due to their high number of nodes and they can also
lead to high render times because the traversal of large trees is time-consuming. To avoid
excessively deep trees the depth is limited during quad-tree generation. In this section
the results of the depth limits 2, 4, 8 and 16 are presented and discussed, which limit the
subdivision of the polygons to a maximum of 42, 44, 48 and 416 parts, respectively. For
this purpose, four case studies with different polygon complexity are selected. The case
studies HORA RC and HORA FA contain very complex polygons, while the case studies
Cologne SA and Graz SC do not.

With a higher depth limit the polygon quad-trees are allowed to grow larger. This means
only polygons are affected, which would grow further. Figure 5.13 makes clear that the
case studies HORA RC and HORA FA contain more such complex polygons than the
other case studies because their GPU memory and time consumption significantly change
with the depth limit and the results of the other case studies are not or only slightly
changing with the maximum tree depth. The increase of memory consumption is due to
a higher number of quad-tree nodes and the need to store their information. Figure 5.13a
shows the effect on memory consumption for the mentioned four case studies.

Quad-trees of complex polygons have to be subdivided more often with a higher value
for the maximum tree depth. Since this is implemented in a sequential manner, it is a
time consuming process. The resulting increase in preprocessing time caused by a higher
depth limit is shown in Figure 5.13b.

91

5. Evaluation

The smaller the depth limit, the more edges have to be stored per leaf and the more
complex are the resulting leaf polygons. A small depth limit has particularly drastic
effects on the HORA RC case study. Figure 5.13c shows this effect by using a logarithmic
scale for the runtime to be able to depict all case studies. A depth limit of two leads to
a runtime that is ten times longer than with a depth limit of four, for the HORA RC
case study. The resulting leaf polygons seem to be large and complex, so that the
point-in-polygon tests take such a long time. A maximum tree depth between 8 and 16
seems to be a good choice for the performance tests that have been made. The rendering
is significantly faster for the two more complex case studies with a depth limit of eight
and decreases only slightly with a higher limit value.

5.2.4 Lines

There are influence factors that only affect lines, such as the line width and corner
styles. All tests are conducted with the same three case studies, which are HORA IL,
HORA RLL, and Cologne SA. They are chosen because they have the fewest lines, the
most line vertices, and the highest number of lines among all case studies. During the
evaluation of the line width, transparency is also tested, which is an additional influence
factor. Since colors and their transparencies are handled in the same way for polygons
as for static lines, the effect is assumed to be the same. Due to the pixel-based data
structures of dynamic lines, the image resolution plays a particularly important role for
them. For this reason, the influence of different image resolutions for dynamic lines is
tested and the results are presented at the end of this section.

Line Sorting

To be able to compare the proposed approach with the approach of Thöny et al. [TBP17],
the render times of static lines are also evaluated with different criteria for sorting the
line segments within their BVHs. The test results for the sorting based on a space filling
curve and based on the importance of lines do not show a significant difference in render
time. Thus, an importance-based sorting is preferred to guarantee a consistent drawing
order of lines.

Line Width & Transparency

The width of a static line determines the extent of a line in meters in world space. For
dynamic lines the line width specifies the scaling factor by which the lines are scaled in
screen space.

For static lines, the line width is used during preprocessing to assign the line segments
to all grid cells that they intersect. This means for a larger line width, more cells are
intersected and more segments have to be referenced per cell. A consequence of more
segments per cell are larger BVHs, which lead to a higher GPU memory consumption.
This effect becomes visible in Figure 5.14a, especially for the Cologne SA case study,
because the high line density causes the line BVHs to grow faster.

92

5.2. Results & Discussion

(a)

(b)

Figure 5.14: Different line widths of static lines and their impact on (a) GPU memory
in megabytes (MB) and (b) render time in milliseconds (ms). The render time is also
influenced by the line opacities, which is indicated by the alpha values a=1.0, a=0.5, and
a=0.25 of their RGBA colors.

Even though the line BVHs grow with the line width, there is no significant change in
preprocessing time for the case studies HORA RLL and HORA IL. Only the update
of the Cologne SA case study slightly increases with an increasing line width. This is
again a result of the faster growing of the line BVHs of this case study caused by its line
density.

The render times also increase with higher line widths, because larger BVHs have to
be traversed and the traversal can only be terminated if the composition of all detected
line colors is opaque. Thus, the transparency is an additional amplification factor for
the render time. It can lead to a high time consumption, especially in combination with
large line widths. The extent to which the line width and opacity influence the runtime
can be seen in Figure 5.14b, where the influence of the opacity of the used RGBA colors
is shown by different alpha values. The alpha values 1.0, 0.5, and 0.25 represent fully,
half, and one quarter opaque lines. The transparency has only a minimal effect for small
line widths, but the transparency amplifies the increase in render time by an increasing
width. This amplification effect can be seen particularly in the Cologne SA case study,
where the render time for a line width of 16 doubles if transparent colors are used.

93

5. Evaluation

(a)

(b)

(c)

Figure 5.15: Different line widths for dynamic lines and their impact on (a) GPU memory
and (b) render time. (c) The render times for Cologne SA also show the influence of
different colors and line opacities, which is indicated by the alpha values a=1.0, a=0.5,
and a=0.25 of their RGBA colors.

The line width of dynamic lines is used differently and therefore leads to different results
than the line width of static lines. As Figure 5.15a shows, it has a great impact on the
GPU memory consumption, especially for the case study Cologne SA. Using wider lines
results in more pixels covered by lines and more line data, which has to be stored per
pixel. The memory consumption of the case study HORA IL does not change with the
line width, because even the largest tested line width does not require more memory
than already reserved for the pixel data. The update time is not influenced by the line

94

5.2. Results & Discussion

width of dynamic lines because their width is dynamically changing during runtime and
is therefore not used during preprocessing.

The broader the lines become, the more they overlap and the more line data contributes
to a pixel. As a result of more data per pixel, the linked lists are getting longer and
their dynamic generation and processing becomes more time consuming. This leads to
higher render times, especially in combination with transparency and different colors.
The influence of the line width, opacity, and the use of different colors on the runtime
of dynamic lines is shown in Figure 5.15c on the basis of the Cologne SA case study.
This case study is used because due to its high line density, the line width has the most
influence. If the memory consumption of static and dynamic lines are compared, it
becomes clear that the line width of dynamic lines has more impact on the memory
usage than the width of static lines. The values increase from under one gigabyte to
several gigabytes for dynamic lines and for the static lines the values only vary within a
few hundred megabytes. The larger impact of the line width on dynamic lines can also be
observed for the runtime, if Figure 5.14b and Figure 5.15b are compared. The greatest
change of runtime happens in the Cologne SA case study for both line types, but for
static lines the change range of about 15 ms is only approximately 30 % of the average
render time and for dynamic lines the change range of about 14 ms is over 170 % of the
average time. This is caused by the enlargement of the overlap areas of dynamic lines
with increasing line width. The large extent of the Cologne SA case study additionally
leads to a large scaling of the lines if the scene is viewed from further away, resulting is
much thicker dynamic lines relative to the screen than static lines ever are.

If different line colors are used, an additional sorting step is necessary. After the pixel
data generation step, all lines are stored in linked lists in random order. The linked lists
have to be sorted per pixel according to the drawing order of the stored lines to ensure
color consistency. For opaque lines only the uppermost line has to be processed and all
lines below can be skipped. With transparent lines, the sorting and rendering of lines
has to be executed until their composition is opaque. Depending on the number of line
segments that contribute to a pixel, this can become a performance bottleneck. A line
width of 16 is chosen to test extreme cases, but it is too high for most of the use cases.
Such a high value can lead to a huge number of line overlaps, so that no clear lines and no
details are visible anymore. The results show that larger line widths and transparent line
colors should only be used if they are really required to avoid unnecessary performance
drops. Especially, the use of different colors for dynamic lines should be well considered
due to the high impact on the line rendering process.

Corner Styles

The style of static and dynamic lines can be modified by using three different corner
styles, i.e., round, miter, and bevel.

For static lines, miter and corner positions have to be stored during prepocessing for the
miter and bevel corner style, respectively. Only one 2D miter position and two 2D corner

95

5. Evaluation

(a)

(b) (c)

Figure 5.16: The corner styles do not have a significant effect on the update time of
static and dynamic lines, but they influence (a) the GPU memory and (b) the render
time of static lines, and (c) the render time of dynamic lines.

positions have to be stored per vertex, which leads to a higher GPU memory consumption
for the bevel corner style, as shown in Figure 5.16a. For the round corner style no
additional positions are necessary. The increase in memory consumption between the
different corner styles is directly related to the number of vertices, because the vertices
determine the number of corners and the required positions for the corner styles. The
case studies HORA RLL and Cologne SA have almost the same memory consumption,
because they contain a similar number of line vertices, while the HORA IL case study
contains only a fraction of their number of vertices. Since the calculation of the miter and
corner positions is simple and fast, there is no significant difference in the preprocessing
time of lines using different corner styles.

The render times for different corner styles reflect the required number of pixel-in-line
tests, which are one, two, or three for a line segment using a round, miter, or bevel
corner style. Figures 5.16b and 5.16c show that this correlation holds true for both, static
and dynamic, lines. One can also see that the corner style has a smaller impact on the
runtime of static lines than of dynamic lines. The reason for this is that pixel-in-line
tests are done for all dynamic line segments during the pixel generation process, even if
the segment is occluded by another one. Static line segments are only tested if the pixel
is not already fully covered. Another difference between static and dynamic lines are

96

5.3. Conclusion

manifested in the case studies HORA RLL and Cologne SA, where the relative render
times to each other are reversed. Static lines take longer to render in the Cologne SA case
study, because there are more overlaps between line segments, which lead to larger line
BVHs and a longer traversal. Dynamic lines are also affected by these overlaps, but the
number of vertices seems to have a larger impact. The HORA RLL case study contains
more vertices, which have to be dynamically processed during the pixel generation step.
One way to reduce this additional processing time would be line simplification. Due to
the constant size of static lines, such an expensive dynamic update is not required for
static lines. For both line visualization methods a round corner style should be preferred
over the other styles because it has the lowest memory requirements and offers the fastest
line rendering of the three styles. One of the other corner styles should only be applied if
sharp corners are really necessary.

Image Resolution

It is assumed that the visualization of dynamic lines with the per-pixel data depends on
the image resolution. This assumption is examined in more detail in this section. The
static decals are also affected by the image resolution, but mainly by the anti-aliasing
and not by its general approach, such as dynamic lines. Therefore, only the influence of
the image resolution on dynamic lines is further discussed.

A higher image resolution leads to a higher GPU memory consumption, which is confirmed
by the results shown in Figure 5.17a. This effect is caused by the higher number of pixels,
resulting in more linked lists that have to be stored per pixel. These lists contain all lines
that contribute to their corresponding pixel.

The render time is also affected by the image resolution and increases with it, which
can be seen in Figure 5.17b. A higher image resolution has a similar effect for all case
studies, independent of the total render times and the different complexities of the line
data. Since Cologne SA is the only case study of the three, that uses individual colors,
it is used to analyze the individual render steps of dynamic lines. The distribution of
the runtime to the individual render steps for increasing image resolution is shown in
Figure 5.17c. The update time of the vertex indices does not change, because this step is
done for all line vertices, independent of the image resolution. The pixel data generation
grows with the resolution and takes the most time of all steps. The percentage increase in
line sorting is the highest of all steps. This may be caused by the naive implementation
of the sorting algorithm with loops and multiple memory accesses, which is another step
that could be improved in the future. As a result of more pixel data that has to be
processed, the render and FXAA step also increase with a higher image resolution.

5.3 Conclusion

The evaluation results show that both new screen-based approaches are able to deal with
real-world use cases. The tested case studies include large-scale environments with huge

97

5. Evaluation

(a)

(b)

(c)

Figure 5.17: Different image resolutions for dynamic lines and their impact on (a) GPU
memory and (b) render time. (c) The distribution of render time to the individual render
steps for the case study Cologne SA.

98

5.3. Conclusion

amounts of vector data, which could still be visualized in real-time. The results also
highlight that the new approaches produce larger render overheads than volume-based
approaches do. But, the new approaches have the advantage that they can better handle
different colors. The usage of many different colors does not lead to extremely long
waiting times and makes, especially for the static decals, hardly any difference.

To conclude this chapter, Table 5.4 gives an overview on the tested influence factors of
the new vector data visualization method. It also contains the impact of the factors on
memory, update, and render time consumption for the different decal types. The amount
and complexity of the vector data has of course an influence on all three aspects. The
performance tests show, that the complexity of the line data is especially demanding
for dynamic lines, because the applied line subdivision during preprocessing leads to
even more data. One of the major influence factors for the static and dynamic approach
is the data distribution. Both approaches are better in dealing with data that is more
distributed rather than densely centered. Otherwise, more data are concentrated on
one decal grid cell or pixel and the traversals of the therefore larger data structures are
more expensive. By processing multiple samples per pixel, the anti-aliasing of the decals
produces an additional render overhead. The anti-aliasing of static decals with MSAA
requires the most part of the render time and a different approach would increase the
render performance the most. The runtime of all decal types is zoom-dependent, but
the zoom factor has a higher impact on dynamic lines. This is mainly caused by the
view-dependent scaling that changes the degree of line overlaps.

The leaf capacity of the polygon quad-trees and their maximum depth have a higher
impact on GPU memory than the decal grid resolution has. The reason for this is that
polygon quad-tree data require more memory than the index-based cell data of the decal
grid. By affecting polygons and lines, the grid resolution has a much higher impact on
the total render time. The leaf capacity and the depth limit for quad-trees influence only
polygons and particularly affect more complex polygons with a higher number of edges.
For use cases with only small polygons, they can also have no effect at all.

Dynamic lines are more influenced by the line width than static lines, because they are
growing larger due to the view-dependent scaling. The use of transparent colors leads to
longer traversals of the data structures of both line types, because an early termination
is only possible with a fully opaque color. Furthermore, the use of different colors has
more impact on dynamic lines, because an additional sorting step has to be executed.
For static lines only one additional memory look-up is necessary. Compared to the line
width and transparency, the corner styles have a small influence on the line visualization
process. The corner styles affect the GPU memory and have a small effect on the update
time of static lines. Different corner styles lead also to different render times for both
line types. In Table 5.4 an increasing effect on memory and render time is shown based
on the corner style order round, miter, and bevel. The performance of the pixel-based
approach of the dynamic lines also depends on the image resolution and becomes more
expensive with a higher number of pixels.

In Table 5.4 one can see that the new screen-based approaches have many influence

99

5. Evaluation

Influence Factor M U R Main Reason(s)

All Decals
Data complexity + + + More data to process
Data distribution – – Less data per cell/pixel
Anti-aliasing + Multiple samples per pixel

Static Decals Zooming in – More pixels covered
Grid Resolution + + – More smaller BVHs

Polygons Leaf Capacity – – + Fewer leaf polygons (complex)
Quad-tree depth + + – More leaf polygons (simple)

Static Lines
Width + ∼ + Larger BVHs
Transparency + Longer BVH traversal
Corner Style + ∼ + More data, more line tests

Dynamic Lines

Zooming in – Less lines visible, less overlaps
Width + + More pixel data, more overlaps
Transparency + Longer linked list traversal
Corner Style + More point-in-line tests
Image Resolution + + More pixel data

Table 5.4: Overview of influence factors for different decal types. The symbols ∼, –, and
+ indicate the behaviour of GPU memory (M), update time (U), and render time (R) if
the influence factor increases. They stand for no significant effect, negative correlation,
and positive correlation, respectively. No symbol means no effect.

factors affecting different aspects of the visualization process. These factors can be
used to further improve the visualization methods based on individual requirements.
If memory is a limiting factor and the data complexity cannot be reduced in advance,
the leaf capacity and the maximum quad-tree depth can be adjusted to control the
memory consumption of complex polygons. For use cases with dynamic lines, the image
resolution would be a good choice to lower the memory usage. If the runtime is more
important, the resolution of the grid can be increased to speed up the render process of
the static decals. A reduced application of transparent lines with different line colors
would lead to a faster rendering of dynamic lines. For more advanced improvements, the
different processes and data structures would need to be optimized to archive a more
efficient rendering. The traversals of the BVHs could be further optimized to improve
the static visualization approach, since traversing the tree can become expensive due to
the non-disjoint branches. The visualization process of dynamic lines could be further
improved by the application of a line simplification algorithm to reduce the line data
that has to be dynamically processed.

100

CHAPTER 6
Summary

This last chapter summarizes the contribution of the thesis and gives an overview of
open topics for future work. The evaluation results showed that the two developed
screen-based visualization methods are capable to display vector data in interactive
3D environments in real time. The visualization method also proved to be suitable for
large-scale environments with vector data sets of hundreds of thousands vector entities
consisting of millions of vertices.

Compared to volume-based techniques, the proposed visualization methods scale better
with the data size and are much more efficient, if many different colors are used. The new
approaches have the disadvantage of a larger render overhead as compared to volume-
based techniques, making it less efficient for smaller use cases with less vector data.
The evaluation results also revealed that not only the data size and complexity of the
individual vector entities have an impact on the performance of the proposed methods,
but also the density of the vector data. The main concept of the visualization methods is
the subdivision of the data into smaller parts in order to reduce the amount that has
to be processed during rendering. A high data density impedes the separation, which
leads to larger data chunks assigned to individual pixels and therefore to a worse render
performance.

The combination of a common static screen-based visualization technique and a new
dynamic approach for lines offers the flexibility to adapt the display of vector entities
according to the concrete use case. Static lines are suggested for applications where
the available memory is limited and the widths of vector lines should stay constant to
avoid overlaps with other objects. Dynamically scaled lines are particularly suitable for
large-scale scenes with a high zoom range, where static lines may disappear even if they
are of interest to the viewer.

To be able to distinguish vector entities and to change the visual appearance according
to the user’s needs, different styles for polygons and lines are available. The color and its

101

6. Summary

transparency can be used to transport additional information. Outlines with different
modes can enclose polygons to highlight the boundaries. Different corner styles can be
applied to change the visual appearance of lines according to the corresponding entities.

In summary, the proposed screen-based vector data visualization methods fulfill the
following points, they ...

• ... are able to render large vector data sets

• ... deliver interactive frame rates

• ... are well suited for large-scale environments

• ... provide a dynamic adaption of lines to interactively changing views

• ... support different polygon and line styles

The proposed visualization methods have still some limitations, which offer interesting
areas for future work. The performance of the line visualization process would benefit
from an efficient screen-based line simplification. Especially, the approach of the dynamic
lines has a high potential of data reduction due to the higher number of line vertices. Line
simplification algorithms producing lines that are visually equivalent to their original
while reducing the line data in real time are an open research problem.

Another specific problem of dynamic lines are dashing artifacts for thin lines, which can
be reduced through the application of MSAA for static lines. Since MSAA is not suitable
for the pixel-based approach of dynamic lines, another anti-aliasing method, such as an
analytical anti-aliasing, should be applied to reduce the artifacts. Also the second-depth
anti-aliasing method used by Thöny et al. [TBP17] and proposed by Persson [Per12]
could prevent lines from becoming thinner than a pixel.

There are still opportunities for performance improvements of the whole visualization
process, so that the preprocessing time becomes shorter and the visualization methods
can be utilized for even larger data sets. Particularly, the preprocessing of static decals
could benefit from a parallel generation of the tree-based data structures on the GPU.
The used BVHs of the static approach could be further optimized for rendering, for
example with the stack-based algorithm proposed by Áfra and Szirmay-Kalos [ÁSK14]
to accelerate the BVH traversal. A different generation process or a more efficient data
structure than the used BVHs should also be considered to speed up the rendering
process, as their non-disjoint branches result in more time-consuming traversals.

102

Bibliography

[ADP20] Alireza Amiraghdam, Alexandra Diehl, and Renato Pajarola. LOCALIS:
Locally-adaptive Line Simplification for GPU-based Geographic Vector
Data Visualization. In Eurographics Conference on Visualization (EuroVis).
Computer Graphics Forum, 2020.

[AHH+18] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Angelo Pesce, Michal
Iwanicki, and Sébastien Hillaire. Real-Time Rendering, Fourth Edition. CRC
Press, Tayler & Francis Group, 2018.

[ÁSK14] Attila T. Áfra and László Szirmay-Kalos. Stackless Multi-BVH Traversal for
CPU, MIC and GPU Ray Tracing. Computer Graphics Forum, 33(1):129–
140, 2014.

[BRSC17] Darius Bakunas-Milanowski, Vernon Rego, Janche Sang, and Yu Chansu.
Efficient Algorithms for Stream Compaction on GPUs. International Journal
of Networking and Computing, 7(2), 2017.

[CR12] Patrick Cozzi and Christophe Riccio. OpenGL Insights. CRC Press, Taylor
& Francis Group, 2012.

[cud] Nvidia CUDA. https://developer.nvidia.com/cuda-zone. Ac-
cessed: 2020-09-30.

[DP73] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction of
the Number of Points Required to Represent a Digitized Line or its Caricature.
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[DWB+13] Erwin De Groot, Brian Wyvill, Loïc Barthe, Ahmad Nasri, and Paul Lalonde.
Implicit Decals: Interactive Editing of Repetitive Patterns on Surfaces.
Computer Graphics Forum, 33:141–151, 2013.

[DXZS13] Baosong Deng, Dong Xu, Jinxia Zhang, and Chiyang Song. Visualization of
Vector Data on Global Scale Terrain. In Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering. Atlantis Press,
2013.

103

https://developer.nvidia.com/cuda-zone

[DZY08] Chenguang Dai, Yongsheng Zhang, and Jingyu Yang. Rendering 3D Vector
Data using the Theory of Stencil Shadow Volumes. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 37:643–647, 2008.

[ESV96] Francine Evans, Steven Skiena, and Amitabh Varshney. Optimizing Tri-
angle Strips for Fast Rendering. In Proceedings of Seventh Annual IEEE
Visualization’96, pages 319–326. IEEE, 1996.

[FEP18] Alex Frasson, Tiago Augusto Engel, and Cesar Tadeu Pozzer. Efficient Screen-
Space Rendering of Vector Features on Virtual Terrains. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 1–10. Association for Computing Machinery, 2018.

[FVFH90] James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice, 2nd Edition. Addison-Wesley,
1990.

[fxa] Nvidia FXAA. https://docs.nvidia.com/gameworks/content/
gameworkslibrary/graphicssamples/opengl_samples/fxaa.
htm. Accessed: 2020-09-30.

[Gre19] Jason Gregory. Game Engine Architecture, Third Edition. CRC Press,
Taylor & Francis Group, 2019.

[hor] Natural Hazard Overview & Risk Assessment Austria (HORA). https:
//hora.gv.at. Accessed: 2020-09-30.

[KJ19] Peter Bernard Keenan and Piotr Jankowski. Spatial Decision Support
Systems: Three Decades On. Decision Support Systems, 116:64–76, 2019.

[LKT+17] Johannes G. Leskens, Christian Kehl, Tim Tutenel, Timothy Kol, Gerwin
De Haan, Guus Stelling, and Elmar Eisemann. An interactive simulation
and visualization tool for flood analysis usable for practitioners. Mitigation
and adaptation strategies for global change, 22(2):307–324, 2017.

[MMJ00] Robert McNamara, Joel McCormack, and Norman P. Jouppi. Prefiltered
Antialiased Lines using Half-Plane Distance Functions. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 77–85. Association for Computing Machinery, 2000.

[MS00] Andrea Mantler and Jack Snoeyink. Safe Sets for Line Simplification. In
10th Annual Fall Workshop on Computational Geometry, 2000.

[OC11] Deron Ohlarik and Patrick Cozzi. A Screen-Space Approach to Rendering
Polylines on Terrain. In ACM SIGGRAPH Posters, page 68. Association
for Computing Machinery, 2011.

104

https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_samples/fxaa.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_samples/fxaa.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_samples/fxaa.htm
https://hora.gv.at
https://hora.gv.at

[ogl] OpenGL. https://www.opengl.org. Accessed: 2020-09-30.

[osm] OpenStreetMap. https://www.openstreetmap.org. Accessed: 2020-
09-30.

[Per12] Emil Persson. Graphics Gems for Games – Findings from Avalanche Studios.
ACM SIGGRAPH Advances in Real-Time Rendering in Games – Course
Material, 2012.

[Pre15] Nikolas Prechtel. On Strategies and Automation in Upgrading 2D to 3D
Landscape Representations. Cartography and Geographic Information Sci-
ence, 42(3):244–258, 2015.

[QWS+11] Zhiyuan Qiao, Jingnong Weng, Zhengwei Sui, Heng Cai, and Xuzhao Zhang.
A rapid visualization method of vector data over 3d terrain. In 19th Inter-
national Conference on Geoinformatics, pages 1–5. IEEE, 2011.

[Rou13] Nicolas P. Rougier. Shader-Based Antialiased, Dashed, Stroked Polylines.
Journal of Computer Graphics Techniques, 2(2), 2013.

[SGK05] Martin Schneider, Michael Guthe, and Reinhard Klein. Real-time rendering
of complex vector data on 3d terrain models. In Proceedings of the 11th

International Conference on Virtual Systems and Multimedia, pages 573–582,
2005.

[SK07] Martin Schneider and Reinhard Klein. Efficient and Accurate Rendering
of Vector Data on Virtual Landscapes. Journal of WSCG, 15(1–3):59–66,
2007.

[SLL08] M. Sun, G. L. Lv, and C. Lei. Large-scale Vector Data Displaying for
Interactive Manipulation in 3D Landscape Map. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
37(7):507–511, 2008.

[SLLW18] Jiangfeng She, Chuang Li, Jiaqi Li, and Qiujun Wei. An Efficient Method
for Rendering Linear Symbols on 3D Terrain Using a Shader Language.
International Journal of Geographical Information Science, 32(3):476–497,
2018.

[SM03] Wu Shin-Ting and Mercedes R. G. Márquez. A non-self-intersection Douglas-
Peucker algorithm. In 16th Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI), pages 60–66. IEEE, 2003.

[SZT+16] Jiangfeng She, Yang Zhou, Xin Tan, Xingong Li, and Xingchen Guo. A
Parallelized Screen-Based Method for Rendering Polylines and Polygons on
Terrain Surfaces. Computers & Geosciences, 99:19–27, 2016.

105

https://www.opengl.org
https://www.openstreetmap.org

[TBP16] Matthias Thöny, Markus Billeter, and Renato Pajarola. Deferred Vector
Map Visualization. In SIGGRAPH ASIA Symposium on Visualization, pages
1–8. Association for Computing Machinery, 2016.

[TBP17] Matthias Thöny, Markus Billeter, and Renato Pajarola. Large-Scale Pixel-
Precise Deferred Vector Maps. Computer Graphics Forum, 37:338–349,
2017.

[TD19] Matthias Trapp and Jürgen Döllner. Real-time Screen-space Geometry
Draping for 3D Digital Terrain Models. In 23rd International Conference
Information Visualisation (IV), pages 281–286. IEEE, 2019.

[thr] Nvidia Thrust. https://developer.nvidia.com/thrust. Accessed:
2020-09-30.

[TSD15] Matthias Trapp, Amir Semmo, and Jürgen Döllner. Interactive Rendering
and Stylization of Transportation Networks using Distance Fields. In Pro-
ceedings of the 10th International Conference on Computer Graphics Theory
and Applications, pages 207–219. SciTePress, 2015.

[vis] Visdom - Combining Simulation and Visualization. http://visdom.at.
Accessed: 2020-09-30.

[VTW11] Michael Vaaraniemi, Marc Treib, and Rüdiger Westermann. High-quality
Cartographic Roads on High-Resolution DEMs. Journal of WSCG, 2011.

[VW93] Maheswari Visvalingam and James D. Whyatt. Line Generalisation by
Repeated Elimination of Points. Cartographic Journal, 30(1):46–51, 1993.

[WH18] Pascaline Wallemacq and Rowena House. Economic Losses, Poverty and
Disasters: 1998-2017. Centre for Research on the Epidemiology of Disasters
United Nations Office for Disaster Risk Reduction, 2018.

[WKW+03] Zachary Wartell, Eunjung Kang, Tony Wasilewski, William Ribarsky, and
Nickolas Faust. Rendering Vector Data over Global, Multi-resolution 3D
Terrain. In Proceedings of the Symposium on Data Visualisation, pages
213–222. Eurographics Association, 2003.

[WLB09] Xianghong Wang, Jiping Liu, and Junfang Bi. Rendering of Vector Data on
3D Virtual Landscapes. In First International Conference on Information
Science and Engineering, pages 2125–2128. IEEE, 2009.

[XSWJ10] Yunfei Xu, Zhengwei Sui, Jingnong Weng, and Xiaolu Ji. Visualization
Methods of Vector Data on a Digital Earth System. In 18th International
Conference on Geoinformatics, pages 1–5. IEEE, 2010.

106

https://developer.nvidia.com/thrust
http://visdom.at

[ZGW+13] Ye Zhi, Yong Gao, Lun Wu, Liang Liu, and Heng Cai. An Improved
Algorithm for Vector Data Rendering in Virtual Terrain Visualization. In
21st International Conference on Geoinformatics, pages 1–4. IEEE, 2013.

[ZPYL16] Peibei Zheng, Guoqiang Peng, Songshan Yue, and Guonian Lu. A Customiz-
able Method for Handling Line Joins for Map Representations Based on
Shader Language. Annals of GIS, 22:215–233, 2016.

107

	Kurzfassung
	Abstract
	Contents
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Question
	Contributions
	Structure of the Thesis

	Related Work
	Terminology
	Texture-Based Techniques
	Geometry-Based Techniques
	Volume-Based Techniques
	Screen-Based Techniques
	Anti-Aliasing
	Line Simplification
	Styling Techniques

	Visualization Process
	Decal Types
	Preprocessing
	Dynamic Update
	Rendering
	Anti-Aliasing
	Line Styles

	Implementation Details
	Input Data
	Preprocessing
	Dynamic Update
	Rendering
	Anti-Aliasing

	Evaluation
	Case Studies
	Results & Discussion
	Conclusion

	Summary
	Bibliography

